157 research outputs found

    Defining the molecular basis of interaction between R3 receptor-type protein tyrosine phosphatases and VE-cadherin

    Get PDF
    Receptor-type protein tyrosine phosphatases (RPTPs) of the R3 subgroup play key roles in the immune, vascular and nervous systems. They are characterised by a large ectodomain comprising multiple FNIII-like repeats, a transmembrane domain, and a single intracellular phosphatase domain. The functional role of the extracellular region has not been clearly defined and potential roles in ligand interaction, di-merization, and regulation of cell-cell contacts have been reported. Here bimolecular fluorescence complementation (BiFC) in live cells was used to examine the molecular basis for the interaction of VE-PTP with VE-cadherin, two proteins involved in endothelial cell contact and maintenance of vascu-lar integrity. The potential of other R3-PTPs to interact with VE-cadherin was also explored using this method. Quantitative BiFC analysis, using a VE-PTP construct expressing only the ectodomain and transmembrane domain, revealed a specific interaction with VE-cadherin, when compared with con-trols. Controls were sialophorin, an unrelated membrane protein with a large ectodomain, and a mem-brane anchored C-terminal Venus-YFP fragment, lacking both ectodomain and transmembrane do-mains. Truncation of the first 16 FNIII-like repeats from the ectodomain of VE-PTP indicated that re-moval of this region is not sufficient to disrupt the interaction with VE-cadherin, although it occurs predominantly in an intracellular location. A construct with a deletion of only the 17th domain of VE-PTP was, in contrast to previous studies, still able to interact with VE-cadherin, although this also was predominantly intracellular. Other members of the R3-PTP family (DEP-1, GLEPP1 and SAP-1) also exhibited the potential to interact with VE-cadherin. The direct interaction of DEP-1 with VE-cadherin is likely to be of physiological relevance since both proteins are expressed in endothelial cells. Together the data presented in the study suggest a role for both the ectodomain and transmembrane domain of R3-PTPs in interaction with VE-cadherin

    Hetero-cycloreversions Mediated by Photoinduced Electron Transfer

    Full text link
    [EN] Discovered more than eight decades ago, the Diels-Alder (DA) cycloaddition (CA) remains one of the most versatile tools in synthetic organic chemistry. Hetero-DA processes are powerful methods for the synthesis of densely functionalized six-membered heterocycles, ubiquitous substructures found in natural products and bioactive compounds. These reactions frequently employ azadienes and oxadienes, but only a few groups have reported DA processes with thiadienes. The electron transfer (ET) version of the DA reaction, though less investigated, has emerged as a subject of increasing interest. In the last two decades, researchers have paid closer attention to radical ionic hetero-cycloreversions, mainly in connection with their possible involvement in the repair of pyrimidine(6-4)pyrimidone photolesions in DNA by photolyases. In biological systems, these reactions likely occur through a reductive photosensitization mechanism. In addition, photooxidation can lead to cycloreversion (CR) reactions, and researchers can exploit this strategy for DNA repair therapies. In this Account, we discuss electron-transfer (ET) mediated hetero-CR reactions. We focus on the oxidative and reductive ET splitting of oxetanes, azetidines, and thietanes. Photoinduced electron transfer facilitates the splitting of a variety of four-membered heterocycles. In this context, researchers have commonly examined oxetanes, both experimentally and theoretically. Although a few studies have reported the cycloreversion of azetidines and thietanes carried out under electron transfer conditions, the number of examples remains limited. In general, the cleavage of the ionized four-membered rings appears to occur via a nonconcerted two-step mechanism. The trapping of the intermediate 1,4-radical ions and transient absorption spectroscopy data support this hypothesis, and it explains the observed loss of stereochemistry in the products. In the initial step, either C-C or C-X bond breaking may occur, and the preferred route depends on the substitution pattern of the ring, the type of heteroatom, and various experimental conditions. To better accommodate spin and charge, C-X cleavage happens more frequently, especially in the radical anionic version of the reaction. The addition or withdrawal of a single electron provides a new complementary synthetic strategy to activate hetero-cycloreversions. Despite its potential, this strategy remains largely unexplored. However, it offers a useful method to achieve C=X/olefin metathesis or, upon ring expansion, to construct six-membered heterocyclic rings.Financial support from the Spanish Government (Grants CTQ2010-14882, SEV2012-0267, and JCI-2010-06204) and the Generalitat Valenciana (Prometeo II/2013/005) is gratefully acknowledged.Pérez Ruiz, R.; Jiménez Molero, MC.; Miranda Alonso, MÁ. (2014). Hetero-cycloreversions Mediated by Photoinduced Electron Transfer. Accounts of Chemical Research. 47(4):1359-1368. https://doi.org/10.1021/ar4003224S1359136847

    RNA Interference Mediated Inhibition of Dengue Virus Multiplication and Entry in HepG2 Cells

    Get PDF
    Background: Dengue virus-host cell interaction initiates when the virus binds to the attachment receptors followed by endocytic internalization of the virus particle. Successful entry into the cell is necessary for infection initiation. Currently, there is no protective vaccine or antiviral treatment for dengue infection. Targeting the viral entry pathway has become an attractive therapeutic strategy to block infection. This study aimed to investigate the effect of silencing the GRP78 and clathrin-mediated endocytosis on dengue virus entry and multiplication into HepG2 cells. Methodology/Principal Findings: HepG2 cells were transfected using specific siRNAs to silence the cellular surface receptor (GRP78) and clathrin-mediated endocytosis pathway. Gene expression analysis showed a marked down-regulation of the targeted genes (87.2%, 90.3%, and 87.8 % for GRP78, CLTC, and DNM2 respectively) in transfected HepG2 cells when measured by RT-qPCR. Intracellular and extracellular viral RNA loads were quantified by RT-qPCR to investigate the effect of silencing the attachment receptor and clathrin-mediated endocytosis on dengue virus entry. Silenced cells showed a significant reduction of intracellular (92.4%) and extracellular viral RNA load (71.4%) compared to non-silenced cells. Flow cytometry analysis showed a marked reduction of infected cells (89.7%) in silenced HepG2 cells compared to non-silenced cells. Furthermore, the ability to generate infectious virions using the plaque assay was reduced 1.07 log in silenced HepG2 cells

    Recent visible light and metal free strategies in [2+2] and [4+2] photocycloadditions

    Full text link
    When aiming to synthesize molecules with elevated molecular complexity starting from relatively simple starting materials, photochemical transformations represent an open avenue to circumvent analogous multistep procedures. Specifically, light-mediated cycloadditions remain as powerful tools to generate new bonds begotten from non-very intuitive disconnections, that alternative thermal protocols would not offer. In response to the current trend in both industrial and academic research pointing towards green and sustainable processes, several strategies that meet these requirements are currently available in the literature. This Minireview summarizes [2+2] and [4+2] photocycloadditions that do not require the use of metal photocatalysts by means of alternative strategies. It is segmented according to the cycloaddition type in order to give the reader a friendly approach and we primarily focus on the most recent developments in the field carried out using visible light, a general overview of the mechanism in each case is offered as wellFinancial support was provided by the European Research Council (ERC-CoG, Contract Number: 647550), the Spanish Government (RTI2018-095038-B-I00), the ‘Comunidad de Madrid’ and European Structural Funds (S2018/NMT-4367). R. I. R thanks Fundación Carolina for a graduate fellowshi

    Assembly, organization, and function of the COPII coat

    Get PDF
    A full mechanistic understanding of how secretory cargo proteins are exported from the endoplasmic reticulum for passage through the early secretory pathway is essential for us to comprehend how cells are organized, maintain compartment identity, as well as how they selectively secrete proteins and other macromolecules to the extracellular space. This process depends on the function of a multi-subunit complex, the COPII coat. Here we describe progress towards a full mechanistic understanding of COPII coat function, including the latest findings in this area. Much of our understanding of how COPII functions and is regulated comes from studies of yeast genetics, biochemical reconstitution and single cell microscopy. New developments arising from clinical cases and model organism biology and genetics enable us to gain far greater insight in to the role of membrane traffic in the context of a whole organism as well as during embryogenesis and development. A significant outcome of such a full understanding is to reveal how the machinery and processes of membrane trafficking through the early secretory pathway fail in disease states

    Bioinformatics and molecular modeling in glycobiology

    Get PDF
    The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein–carbohydrate interaction are reviewed

    The creatine kinase system and pleiotropic effects of creatine

    Get PDF
    The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans

    Biofabrication: an overview of the approaches used for printing of living cells

    Get PDF
    The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs

    Location, location, location

    No full text
    corecore