2,111 research outputs found

    Calcium Homeostasis and Organelle Function in the Pathogenesis of Obesity and Diabetes

    Get PDF
    A number of chronic metabolic pathologies, including obesity, diabetes, cardiovascular disease, asthma, and cancer, cluster together to present the greatest threat to human health. As research in this field has advanced, it has become clear that unresolved metabolic inflammation, organelle dysfunction, and other cellular and metabolic stresses underlie the development of these chronic metabolic diseases. However, the relationship between these systems and pathological mechanisms is poorly understood. Here we discuss the role of cellular Ca2+ homeostasis as a critical mechanism integrating the myriad of cellular and subcellular dysfunctional networks found in metabolic tissues such as liver and adipose tissue in the context of metabolic disease, particularly in obesity and diabetes

    Defective Hepatic Autophagy in Obesity Promotes ER Stress and Causes Insulin Resistance

    Get PDF
    SummaryAutophagy is a homeostatic process involved in the bulk degradation of cytoplasmic components, including damaged organelles and proteins. In both genetic and dietary models of obesity, we observed a severe downregulation of autophagy, particularly in Atg7 expression levels in liver. Suppression of Atg7 both in vitro and in vivo resulted in defective insulin signaling and elevated ER stress. In contrast, restoration of the Atg7 expression in liver resulted in dampened ER stress, enhanced hepatic insulin action, and systemic glucose tolerance in obese mice. The beneficial action of Atg7 restoration in obese mice could be completely prevented by blocking a downstream mediator, Atg5, supporting its dependence on autophagy in regulating insulin action. Our data demonstrate that autophagy is an important regulator of organelle function and insulin signaling and that loss of autophagy is a critical component of defective insulin action seen in obesity

    Endoplasmic Reticulum Stress Is Reduced in Tissues of Obese Subjects After Weight Loss

    Get PDF
    OBJECTIVE—Obesity is associated with insulin resistance and type 2 diabetes, although the mechanisms linking these pathologies remain undetermined. Recent studies in rodent models revealed endoplasmic reticulum (ER) stress in adipose and liver tissues and demonstrated that ER stress could cause insulin resistance. Therefore, we tested whether these stress pathways were also present in obese human subjects and/or regulated by weight loss

    Macrophage mal1 deficiency suppresses atherosclerosis in low-density lipoprotein receptor-null mice by activating peroxisome proliferator-activated receptor-Îł-regulated genes

    Get PDF
    Objective- The adipocyte/macrophage fatty acid-binding proteins aP2 (FABP4) and Mal1 (FABP5) are intracellular lipid chaperones that modulate systemic glucose metabolism, insulin sensitivity, and atherosclerosis. Combined deficiency of aP2 and Mal1 has been shown to reduce the development of atherosclerosis, but the independent role of macrophage Mal1 expression in atherogenesis remains unclear. Methods and Results- We transplanted wild-type (WT), Mal1, or aP2 bone marrow into low-density lipoprotein receptor-null (LDLR) mice and fed them a Western diet for 8 weeks. Mal1→LDLR mice had significantly reduced (36%) atherosclerosis in the proximal aorta compared with control WT→LDLR mice. Interestingly, peritoneal macrophages isolated from Mal1-deficient mice displayed increased peroxisome proliferator-activated receptor-Îł (PPARÎł) activity and upregulation of a PPARÎł-related cholesterol trafficking gene, CD36. Mal1 macrophages showed suppression of inflammatory genes, such as COX2 and interleukin 6. Mal1→LDLR mice had significantly decreased macrophage numbers in the aortic atherosclerotic lesions compared with WT→LDLR mice, suggesting that monocyte recruitment may be impaired. Indeed, blood monocytes isolated from Mal1→LDLR mice on a high-fat diet had decreased CC chemokine receptor 2 gene and protein expression levels compared with WT monocytes. Conclusion- Taken together, our results demonstrate that Mal1 plays a proatherogenic role by suppressing PPARÎł activity, which increases expression of CC chemokine receptor 2 by monocytes, promoting their recruitment to atherosclerotic lesions. © 2011 American Heart Association, Inc

    Serum Fatty Acid-Binding Protein 4 Is a Predictor of Cardiovascular Events in End-Stage Renal Disease

    Get PDF
    BACKGROUND: Fatty acid-binding protein 4 (FABP4/A-FABP/aP2), a lipid chaperone, is expressed in both adipocytes and macrophages. Recent studies have shown that FABP4 is secreted from adipocytes and that FABP4 level is associated with obesity, insulin resistance, and atherosclerosis. However, little is known about the impact of FABP4 concentrations on prognosis. We tested the hypothesis that FABP4 level predicts prognosis of patients with end-stage renal disease (ESRD), a group at high risk for atherosclerosis-associated morbidity and mortality. METHODS AND RESULTS: Biochemical markers including FABP4 were determined in 61 ESRD patients on chronic hemodialysis (HD). Serum FABP4 level in females (404.2±30.5 ng/ml) was significantly higher than that in males (315.8±30.0 ng/ml), and the levels in ESRD patients were about 20-times higher than those in age-, gender- and body mass index (BMI)-matched control subjects with normal renal function. FABP4 level was decreased by 57.2% after HD and was positively correlated with blood pressure, BMI, and levels of lipids and insulin. Multiple regression analysis indicated that HD duration, BMI, and triglycerides level were independent determinants for FABP4 level. ESRD patients with high FABP4 levels had higher cardiovascular mortality during the 7-year follow-up period. Cox proportional hazard regression analysis showed that logarithmically transformed FABP4 level was an independent predictor of cardiovascular death adjusted for age, gender, HD duration, BMI, and triglycerides level (hazard ratio, 7.75; 95% CI, 1.05-25.31). CONCLUSION: These findings suggest that FABP4 level, being related to adiposity and metabolic disorders, is a novel predictor of cardiovascular mortality in ESRD

    Macrophage Mal1 Deficiency Suppresses Atherosclerosis in Low-Density Lipoprotein Receptor -Null Mice by Activating Peroxisome Proliferator-Activated Receptor-g-Regulated Genes

    Get PDF
    Cataloged from PDF version of article.Objective-The adipocyte/macrophage fatty acid-binding proteins aP2 (FABP4) and Mal1 (FABP5) are intracellular lipid chaperones that modulate systemic glucose metabolism, insulin sensitivity, and atherosclerosis. Combined deficiency of aP2 and Mal1 has been shown to reduce the development of atherosclerosis, but the independent role of macrophage Mal1 expression in atherogenesis remains unclear. Methods and Results-We transplanted wild-type (WT), Mal1(-/-), or aP2(-/-) bone marrow into low-density lipoprotein receptor-null (LDLR(-/-)) mice and fed them a Western diet for 8 weeks. Mal1(-/-)-> LDLR(-/-) mice had significantly reduced (36%) atherosclerosis in the proximal aorta compared with control WT -> LDLR(-/-) mice. Interestingly, peritoneal macrophages isolated from Mal1-deficient mice displayed increased peroxisome proliferator-activated receptor-gamma (PPAR gamma) activity and upregulation of a PPAR gamma-related cholesterol trafficking gene, CD36. Mal1(-/-) macrophages showed suppression of inflammatory genes, such as COX2 and interleukin 6. Mal1(-/-)-> LDLR(-/-) mice had significantly decreased macrophage numbers in the aortic atherosclerotic lesions compared with WT -> LDLR(-/-) mice, suggesting that monocyte recruitment may be impaired. Indeed, blood monocytes isolated from Mal1(-/-)-> LDLR(-/-) mice on a high-fat diet had decreased CC chemokine receptor 2 gene and protein expression levels compared with WT monocytes. Conclusion-Taken together, our results demonstrate that Mal1 plays a proatherogenic role by suppressing PPAR gamma activity, which increases expression of CC chemokine receptor 2 by monocytes, promoting their recruitment to atherosclerotic lesions. (Arterioscler Thromb Vasc Biol. 2011;31:1283-1290.
    • 

    corecore