452 research outputs found

    Odin observations of ammonia in the Sgr A +50 km/s Cloud and Circumnuclear Disk

    Get PDF
    Context. The Odin satellite is now into its sixteenth year of operation, much surpassing its design life of two years. One of the sources which Odin has observed in great detail is the Sgr A Complex in the centre of the Milky Way. Aims. To study the presence of NH3 in the Galactic Centre and spiral arms. Methods. Recently, Odin has made complementary observations of the 572 GHz NH3 line towards the Sgr A +50 km/s Cloud and Circumnuclear Disk (CND). Results. Significant NH3 emission has been observed in both the +50 km/s Cloud and the CND. Clear NH3 absorption has also been detected in many of the spiral arm features along the line of sight from the Sun to the core of our Galaxy. Conclusions. The very large velocity width (80 km/s) of the NH3 emission associated with the shock region in the southwestern part of the CND may suggest a formation/desorption scenario similar to that of gas-phase H2O in shocks/outflows.Comment: 5 pages, 3 figures, 3 table

    Organic molecules in the spectral line survey of Orion KL with the Odin Satellite from 486492 GHz and 541577 GHz

    Get PDF
    Proceedings of the International Astronomical Union, 2008, v. 4 n. S251, p. 29-30A spectral line survey of Orion KL has been performed over the frequency range of 486492 GHz and 541577 GHz using the Odin satellite. Over 1000 lines have been identified from 40 different molecular species, including several organic compounds such as methyl cyanide (CH3CN), methanol (CH3OH, 13CH3OH), and dimethyl ether (CH3OCH3). © 2008 International Astronomical Union.published_or_final_versio

    Herschel and Odin observations of H2O, CO, CH, CH+, and NII in the barred spiral galaxy NGC 1365. Bar-induced activity in the outer and inner circumnuclear tori

    Full text link
    The Odin satellite is now into its twentieth year of operation, much surpassing its design life of two years. One of its major pursuits was the search for and study of H2O in the Solar System and the Milky Way galaxy. Herschel has observed the central region of NGC 1365 in two positions, and both its SPIRE and PACS observations are available in the Herschel Science Archive. Herschel PACS images have been produced of the 70 and 160 micron infrared emission from the whole galaxy, and also of the cold dust distribution as obtained from the ratio of the 160 to 70 micron images. The Herschel SPIRE observations have been used to produce maps of the 557 GHz o-H2O, 752 GHz p-H2O, 691 GHz CO(6-5), 1037 GHz CO(9-8), 537 GHz CH, 835 GHz CH+, and the 1461 GHz NII lines; however, these observations have no effective velocity resolution. Odin has recently observed the 557 GHz o-H2O ground state line in the central region with high (5 km/s) spectral resolution. The emission and absorption of H2O at 557 GHz, with a velocity resolution of 5 km/s, has been marginally detected in NGC 1365 with Odin. The H2O is predominantly located in a shocked 15" (1.3 kpc) region near some central compact radio sources and hot-spot HII regions, close to the northeast component of the molecular torus surrounding the nucleus. An analysis of the H2O line intensities and velocities indicates that a shock-region is located here. This is corroborated by a statistical image deconvolution of our SEST CO(3-2) observations, yielding 5" resolution, and a study of our VLA HI absorption observations. Additionally, an enticing 20" HI ridge is found to extend south-southeast from the nucleus, coinciding in position with the southern edge of an OIII outflow cone, emanating from the nucleus. The molecular chemistry of the shocked central region is analyzed with special emphasis on the CO, H2O and CH, CH+ results.Comment: 25 pages, 11 figure

    On the accretion process in a high-mass star forming region - A multitransitional THz Herschel-HIFI study of ammonia toward G34.26+0.15

    Full text link
    [Abridged] Our aim is to explore the gas dynamics and the accretion process in the early phase of high-mass star formation. The inward motion of molecular gas in the massive star forming region G34.26+0.15 is investigated by using high-resolution profiles of seven transitions of ammonia at THz frequencies observed with Herschel-HIFI. The shapes and intensities of these lines are interpreted in terms of radiative transfer models of a spherical, collapsing molecular envelope. An accelerated Lambda Iteration (ALI) method is used to compute the models. The seven ammonia lines show mixed absorption and emission with inverse P-Cygni-type profiles that suggest infall onto the central source. A trend toward absorption at increasingly higher velocities for higher excitation transitions is clearly seen in the line profiles. The J=32J = 3\leftarrow2 lines show only very weak emission, so these absorption profiles can be used directly to analyze the inward motion of the gas. This is the first time a multitransitional study of spectrally resolved rotational ammonia lines has been used for this purpose. Broad emission is, in addition, mixed with the absorption in the 10001_0-0_0 ortho-NH3_3 line, possibly tracing a molecular outflow from the star forming region. The best-fitting ALI model reproduces the continuum fluxes and line profiles, but slightly underpredicts the emission and absorption depth in the ground-state ortho line 10001_0-0_0. The derived ortho-to-para ratio is approximately 0.5 throughout the infalling cloud core similar to recent findings for translucent clouds in sight lines toward W31C and W49N. We find evidence of two gas components moving inwards toward the central region with constant velocities: 2.7 and 5.3 km\,s1^{-1}, relative to the source systemic velocity. The inferred mass accretion rates derived are sufficient to overcome the expected radiation pressure from G34.26+0.15.Comment: 20 pages, 18 figures, accepted by A&A 3 October 201

    Isotopic ratios of H, C, N, O, and S in comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy)

    Full text link
    The apparition of bright comets C/2012 F6 (Lemmon) and C/2014 Q2 (Lovejoy) in March-April 2013 and January 2015, combined with the improved observational capabilities of submillimeter facilities, offered an opportunity to carry out sensitive compositional and isotopic studies of the volatiles in their coma. We observed comet Lovejoy with the IRAM 30m telescope between 13 and 26 January 2015, and with the Odin submillimeter space observatory on 29 January - 3 February 2015. We detected 22 molecules and several isotopologues. The H216_2^{16}O and H218_2^{18}O production rates measured with Odin follow a periodic pattern with a period of 0.94 days and an amplitude of ~25%. The inferred isotope ratios in comet Lovejoy are 16^{16}O/18^{18}O = 499 ±\pm 24 and D/H = 1.4 ±\pm 0.4 ×104\times 10^{-4} in water, 32^{32}S/34^{34}S = 24.7 ±\pm 3.5 in CS, all compatible with terrestrial values. The ratio 12^{12}C/13^{13}C = 109 ±\pm 14 in HCN is marginally higher than terrestrial and 14^{14}N/15^{15}N = 145 ±\pm 12 in HCN is half the Earth ratio. Several upper limits for D/H or 12C/13C in other molecules are reported. From our observation of HDO in comet C/2014 Q2 (Lovejoy), we report the first D/H ratio in an Oort Cloud comet that is not larger than the terrestrial value. On the other hand, the observation of the same HDO line in the other Oort-cloud comet, C/2012 F6 (Lemmon), suggests a D/H value four times higher. Given the previous measurements of D/H in cometary water, this illustrates that a diversity in the D/H ratio and in the chemical composition, is present even within the same dynamical group of comets, suggesting that current dynamical groups contain comets formed at very different places or times in the early solar system.Comment: Accepted for publication in Astronomy and Astrophysic

    Electric Field Control of Shallow Donor Impurities in Silicon

    Full text link
    We present a tight-binding study of donor impurities in Si, demonstrating the adequacy of this approach for this problem by comparison with effective mass theory and experimental results. We consider the response of the system to an applied electric field: donors near a barrier material and in the presence of an uniform electric field may undergo two different ionization regimes according to the distance of the impurity to the Si/barrier interface. We show that for impurities ~ 5 nm below the barrier, adiabatic ionization is possible within switching times of the order of one picosecond, while for impurities ~ 10 nm or more below the barrier, no adiabatic ionization may be carried out by an external uniform electric field. Our results are discussed in connection with proposed Si:P quantum computer architectures.Comment: 18 pages, 6 figures, submitted to PR
    corecore