1,577 research outputs found

    Differential effects of endogenous and exogenous nitric oxide on the release of endothelin-1 from the intact perfused rat adrenal gland in situ

    Get PDF
    AbstractStudies using an inhibitor of nitric oxide (NO) synthesis have suggested that endogenous NO may have a role in regulating endothelin release. We investigated the effect of endogenous and exogenous nitric oxide (NO) on the release of irET-1. l-NAME stimulated, but l-arginine inhibited irET-1 release. Perfusing sodium nitroprusside (SNP), however, did not inhibit irET-1 secretion. CyclicGMP, the second messenger for NO action, was stimulated by SNP but not by l-arginine. These data demonstrate that endogenous NO inhibits of irET-1, in a manner which is independent of cGMP, and suggest that this action may contribute to the vasodilatory effect of NO

    Chlorotyrosine protein adducts are reliable biomarkers of neutrophil-induced cytotoxicity in vivo

    Get PDF
    INTRODUCTION:A limitation for investigating the pathophysiological role of neutrophils in vivo is the lack of a reliable biomarker for neutrophil cytotoxicity in the liver. Therefore, we investigated if immunohistochemical detection of chlorotyrosine protein adducts can be used as a specific footprint for generation of neutrophil-derived hypochlorous acid in vivo.METHODS:C3Heb/FeJ mice were treated with 100 micrograms/kg endotoxin (ET) alone or in combination with 700 mg/kg galactosamine (Gal/ET). Some animals received additionally two doses of 10 mg/kg of the pancaspase inhibitor Z-VAD-fmk. An antibody against chlorotyrosine was used for the immunohistochemical analysis.RESULTS:At 6 h after Gal/ET, hepatocellular apoptosis was evident without increase in plasma ALT activities. Neutrophils accumulated in sinusoids but there was no evidence for chlorotyrosine staining. At 7 h after Gal/ET, about 54% of the sequestered neutrophils had extravasated, there was extensive necrosis and increased plasma ALT activities. Extensive immunostaining for chlorotyrosine, mainly colocalized with neutrophils, could be observed. Treatment with Z-VAD-fmk eliminated apoptosis, necrosis and the increase in plasma ALT values. Neutrophil extravasation was prevented but the overall number of neutrophils in the liver was unchanged. Chlorotyrosine staining was absent in these samples. After ET alone (7 h), sinusoidal neutrophil accumulation was similar to Gal/ET treatment but there was no apoptosis, neutrophil extravasation, ALT release or chlorotyrosine staining.CONCLUSIONS:Chlorotyrosine staining in liver samples correlated well with evidence of neutrophil-induced liver injury in the endotoxemia model. These results indicate that assessment of chlorotyrosine protein adduct formation by immunohistochemistry could be a useful marker of neutrophil-induced liver cell injury in vivo.This item is part of the UA Faculty Publications collection. For more information this item or other items in the UA Campus Repository, contact the University of Arizona Libraries at [email protected]

    Patient centred diagnosis: sharing diagnostic decisions with patients in clinical practice.

    Get PDF
    Patient centred diagnosis is best practised through shared decision making; an iterative dialogue between doctor and patient, whichrespects a patient’s needs, values, preferences, and circumstances. Shared decision making for diagnostic situations differs fundamentally from that for treatment decisions. This has important implications when considering its practical application. The nature of dialogue should be tailored to the specific diagnostic decision; scenarios with higher stakes or uncertainty usually require more detailed conversation

    Correction to: ‘Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements'

    Get PDF
    The above article was originally published online in Early View on 20 November 2009, and subsequently in volume 136 (issue 647), pp. 414 – 428, DOI:10.1002/qj.563. There was an error in Figures 2, 5, 6 and 9. In these figures the incorrect symbols were used in the lines representing case a and case z. The corrected figures are reproduced below. Equation 4 also contained an error. The corrected equation appears below

    Pre-existing Microfilarial Infections of American Robins (Passeriformes: Turdidae) and Common Grackles (Passeriformes: Icteridae) Have Limited Impact on Enhancing Dissemination of West Nile Virus in Culex pipiens Mosquitoes (Diptera: Culicidae)

    Get PDF
    Microfilariae (MF) are the immature stages of filarial nematode parasites and inhabit the blood and dermis of all classes of vertebrates, except fish. Concurrent ingestion of MF and arboviruses by mosquitoes can enhance mosquito transmission of virus compared to when virus is ingested alone. Shortly after being ingested, MF penetrate the mosquito’s midgut and may introduce virus into the mosquito’s hemocoel, creating a disseminated viral infection much sooner than normal. This phenomenon is known as microfilarial enhancement. Both American Robins and Common Grackles harbor MF—that is, Eufilaria sp. and Chandlerella quiscali von Linstow (Spirurida: Onchocercidae), respectively. We compared infection and dissemination rates in Culex pipiens L. mosquitoes that fed on birds with and without MF infections that had been infected with West Nile virus (WNV). At moderate viremias, about 107 plaque-forming units (pfu)/ml of blood, there were no differences in infection or dissemination rates among mosquitoes that ingested viremic blood from a bird with or without microfilaremia. At high viremias, \u3e108.5 pfu/ml, mosquitoes feeding on a microfilaremic Grackle with concurrent viremia had significantly higher infection and dissemination rates than mosquitoes fed on viremic Grackles without microfilaremia. Microfilarial enhancement depends on the specific virus, MF, and mosquito species examined. How virus is introduced into the hemocoel by MF differs between the avian/WNV systems described here (i.e., leakage) and various arboviruses with MF of the human filarid, Brugia malayi (Brug) (Spirurida: Onchocercidae) (i.e., cotransport). Additional studies are needed to determine if other avian species and their MF are involved in the microfilarial enhancement of WNV in nature
    corecore