65 research outputs found

    GNE Is Involved in the Early Development of Skeletal and Cardiac Muscle

    Get PDF
    UDP-N-acetylglucosamine 2 epimerase/N-acetylmannosamime kinase (GNE) is a bifunctional enzyme which catalyzes the two key sequential steps in the biosynthetic pathway of sialic acid, the most abundant terminal monosaccharide on glycoconjugates of eukaryotic cells. GNE knock out (GNE KO) mice are embryonically lethal at day E8.5. Although the role of GNE in the sialic pathway has been well established as well as the importance of sialylation in many diverse biological pathways, less is known about the involvement of GNE in muscle development. To address this issue we have studied the role of GNE during in vitro embryogenesis by comparing the developmental profile in culture of embryonic stem cells (ES) from wild type and from GNE KO E3.5 mice embryos, during 45 days. Neuronal cells appeared rarely in GNE KO ES cultures and did not reach an advanced differentiated stage. Although primary cardiac cells appeared at the same time in both normal and GNE KO ES cultures, GNE KO cardiac cells degraded very soon and their beating capacity decayed rapidly. Furthermore very rare skeletal muscle committed cells were detected in the GNE KO ES cultures at any stage of differentiation, as assessed by analysis of the expression of either Pax7, MyoD and MyHC markers. Beyond the supporting evidence that GNE plays an important role in neuronal cell and brain development, these results show that GNE is strongly involved in cardiac tissue and skeletal muscle early survival and organization. These findings could open new avenues in the understanding of muscle function mechanisms in health and in disease

    UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase (GNE) Binds to Alpha-Actinin 1: Novel Pathways in Skeletal Muscle?

    Get PDF
    Hereditary inclusion body myopathy (HIBM) is a rare neuromuscular disorder caused by mutations in GNE, the key enzyme in the biosynthetic pathway of sialic acid. While the mechanism leading from GNE mutations to the HIBM phenotype is not yet understood, we searched for proteins potentially interacting with GNE, which could give some insights about novel putative biological functions of GNE in muscle. We used a Surface Plasmon Resonance (SPR)-Biosensor based assay to search for potential GNE interactors in anion exchanged fractions of human skeletal muscle primary culture cell lysate. Analysis of the positive fractions by in vitro binding assay revealed alpha-actinin 1 as a potential interactor of GNE. The direct interaction of the two proteins was assessed in vitro by SPR-Biosensor based kinetics analysis and in a cellular environment by a co-immunoprecipitation assay in GNE overexpressing 293T cells. Furthermore, immunohistochemistry on stretched mouse muscle suggest that both GNE and alpha-actinin 1 localize to an overlapping but not identical region of the myofibrillar apparatus centered on the Z line. The interaction of GNE with alpha-actinin 1 might point to its involvement in alpha-actinin mediated processes. In addition these studies illustrate for the first time the expression of the non-muscle form of alpha-actinin, alpha-actinin 1, in mature skeletal muscle tissue, opening novel avenues for its specific function in the sarcomere. Although no significant difference could be detected in the binding kinetics of alpha-actinin 1 with either wild type or mutant GNE in our SPR biosensor based analysis, further investigation is needed to determine whether and how the interaction of GNE with alpha-actinin 1 in skeletal muscle is relevant to the putative muscle-specific function of alpha-actinin 1, and to the muscle-restricted pathology of HIBM

    The collapsin response mediator protein 1 (CRMP-1) and the promyelocytic leukemia zinc finger protein (PLZF) bind to UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme of sialic acid biosynthesis

    Get PDF
    Sialic acids (Sia) are expressed as terminal sugars in many glycoconjugates. They are involved in a variety of cell-cell interactions and therefore play an important role during development and regeneration. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme in the de novo synthesis of Sia and it is a regulator of cell surface sialylation. Inactivation of GNE in mice results in early embryonic lethality. Mutations in the GNE gene are of clinical relevance in hereditary inclusion body myopathy, but these mutations do not necessarily decrease the enzymatic activity of GNE. In this study, we searched for novel function of the GNE protein beside its enzymatic function in the Sia biosynthesis. We here report the identification of novel GNE-interacting proteins. Using a human prey matrix we identified four proteins interacting with GNE in a yeast two-hybrid assay. For two of them, the collapsin response mediator protein 1 and the promyelocytic leukemia zinc finger protein, we could verify protein-protein interaction with GNE

    Loss of UDP-N-acetylglucosamine 2-epimerase/ N-acetylmannosamine kinase (GNE) induces apoptotic processes in pancreatic carcinoma cells

    No full text
    Early invasive growth and metastasis are features of pancreatic cancer that rely on its resistance to anoikis, an apoptosis program activated on loss of matrix anchorage. How anoikis is regulated is unclear. UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine-kinase (GNE) was silenced, or p16 was overexpressed, in human pancreatic carcinoma cells. Gene expression profiling, enzymatic assays, Western blotting, and cell cycle analysis were conducted. Silencing of GNE, the key enzyme of sialic acid biosynthesis, sensitizes pancreatic cancer cells to anoikis. Accordingly, we observed a loss of GNE enzyme activity in cells, which became anoikis susceptible after transfection with the tumor suppressor p16. Similarly, studies of another cell line with low GNE activity revealed strong anoikis susceptibility, confirming the association of low GNE activity and anoikis susceptibility. Gene expression profiling demonstrated that the loss of GNE triggered the transcriptional activation of the ATF4-ATF3-CHOP pathway, leading to apoptosis in the framework of the unfolded protein response. In silico analysis showed that GNE up-regulation occurred predominantly in pancreatic cancer but also in other malignancies. Delineation of GNE-dependent signaling pathways may provide targets that control anchorage dependence and/or restore drug efficacy, which is of utmost relevance for the treatment of pancreatic cancer

    Sialylation is essential for early development in mice

    No full text
    Sialic acids are widely expressed as terminal carbohydrates on glycoconjugates of eukaryotic cells. Sialylation is crucial for a variety of cellular functions, such as cell adhesion or signal recognition, and regulates the biological stability of glycoproteins. The key enzyme of sialic acid biosynthesis is the bifunctional UDP-N-acetylglucosamine-2-epimerase/N-acetylmannosamine kinase (UDP-GlcNAc 2-epimerase), which catalyzes the first two steps of sialic acid biosynthesis in the cytosol. We report that inactivation of the UDP-GlcNAc 2-epimerase by gene targeting causes early embryonic lethality in mice, thereby emphasizing the fundamental role of this bifunctional enzyme and sialylation during development. The need of UDP-GlcNAc 2-epimerase for a defined sialylation process is exemplified with the polysialylation of the neural cell adhesion molecule in embryonic stem cells
    • …
    corecore