
FEBS Letters 580 (2006) 6649–6654

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
The collapsin response mediator protein 1 (CRMP-1) and
the promyelocytic leukemia zinc finger protein (PLZF) bind to
UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine

kinase (GNE), the key enzyme of sialic acid biosynthesis

Wenke Weidemanna, Ulrich Stelzlb, Ulrike Lisewskia, Kaya Borka, Erich E. Wankerb,
Stephan Hinderlicha, Rüdiger Horstkortea,*
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Abstract Sialic acids (Sia) are expressed as terminal sugars in
many glycoconjugates. They are involved in a variety of cell–cell
interactions and therefore play an important role during develop-
ment and regeneration. UDP-N-acetylglucosamine 2-epimerase/
N-acetylmannosamine kinase (GNE) is the key enzyme in the de
novo synthesis of Sia and it is a regulator of cell surface sialyla-
tion. Inactivation of GNE in mice results in early embryonic
lethality. Mutations in the GNE gene are of clinical relevance
in hereditary inclusion body myopathy, but these mutations do
not necessarily decrease the enzymatic activity of GNE. In this
study, we searched for novel function of the GNE protein beside
its enzymatic function in the Sia biosynthesis. We here report the
identification of novel GNE-interacting proteins. Using a human
prey matrix we identified four proteins interacting with GNE in a
yeast two-hybrid assay. For two of them, the collapsin response
mediator protein 1 and the promyelocytic leukemia zinc finger
protein, we could verify protein–protein interaction with GNE.
� 2006 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Sialic acids (Sia) [1], which constitute a family of aminosu-

gars, are the most abundant terminal monosaccharides on gly-

coconjugates of eukaryotic cell surfaces. Sia are involved in a

variety of cellular functions, such as cell–cell interaction and

virus infection, and they confer stability on glycoproteins [2–

4]. Sia are synthesized in the cytosol from UDP-N-acetylglucos-

amine by four consecutive reactions. The first two steps in Sia

biosynthesis are catalyzed by a single bi-functional enzyme,

UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine

kinase (GNE) [5,6]. GNE is the key enzyme of Sia synthesis

and it is a regulator of cell surface sialylation [7]. Only the hex-
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americ form of the enzyme catalyzes both enzymatic reactions

[6]. Recently, we showed that the carboxy-terminal kinase

domain of GNE is responsible for its multimerization [8]. The

sequence of GNE is very conserved between rat, mouse and

human tissues [5,9,10]. Using northern-blot analysis and

in situ hybridization, the highest expression of GNE was found

in the liver. The enzyme was expressed to a lesser extent in all

other investigated organs. It is fully expressed at all the stages

of mouse development investigated so far [9]. GNE is mainly

found in the cytosol but Krause et al. [11] very recently demon-

strated that GNE is also present in the nucleus.

The enzymatic activity of GNE is regulated by phosphoryla-

tion and several protein kinase C isoforms have been coimmu-

noprecipitated together with GNE from rat liver homogenates

[12]. Inactivation of GNE by gene targeting causes early

embryonic lethality in mice, thereby emphasizing the funda-

mental role of this bifunctional enzyme and sialylation

in vivo [13]. The clinical relevance of GNE is revealed by a

binding defect of the feedback inhibitor CMP-Sia. This leads

to a Sia storage disease termed sialuria, in which free Sia accu-

mulates in the cytoplasm, resulting in severe mental retarda-

tion of the surviving patients [14]. Further biological

significance of this enzyme is illustrated by the observation

that in hepatoma the low expression of Sia is correlated with

a dramatically reduced activity of GNE [15].

Recently, it was demonstrated that mutations in the human

GNE-gene are responsible for hereditary inclusion body

myopathy (HIBM), an unique group of neuromuscular disor-

ders characterized by adult onset, slowly progressive weakness

and typical muscle pathology [16].

However, the different mutations result in different enzymatic

activities but not in different disease phenotypes and, therefore,

do not suggest a direct role of the enzymatic function of GNE

in the disease mechanism during HIBM [17]. The aim of this

study was to find novel functions of GNE, independent of its

function as a key enzyme of Sia biosynthesis. For this purpose,

we searched for GNE-interacting proteins by using a yeast two-

hybrid system. We identified four proteins interacting with

GNE in a yeast two-hybrid matrix screen and demonstrated

direct protein–protein interaction of GNE with two of these,

i.e. the collapsin response mediator protein 1 (CRMP-1) and

the promyelocytic leukemia zinc finger protein (PLZF).
blished by Elsevier B.V. All rights reserved.
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2. Material and methods

2.1. Cell culture
PC12 and HL-60 cells were cultured in suspension. PC12 cells were

cultured in RPMI supplemented with 10% horse serum, penicillin
(100 U/ml) and streptomycin (100 lg/ml), 2 mM LL-glutamine. HL-60
cells were cultured in DMEM supplemented with 20% fetal calf serum,
penicillin (100 U/ml) and streptomycin (100 lg/ml), 2 mM LL-gluta-
mine. Mouse embryonic stem cells were grown on gelatin-coated flasks
in DMEM supplemented with 15% fetal calf serum, leukemia inhibi-
tory factor (2000 U/ml), 0.1 mM b-mercaptoethanol, 0.2 mM non-
essential amino acids, 2 mM LL-glutamine and nucleosides. All cells
were incubated at 37 �C with 5% CO2 in a humidified atmosphere
and were passaged every 2–3 days. Sf900 insect cells were cultured in
suspension at 27 �C in SF900 II Medium (GibcoBRL) supplemented
with 2 mM LL-glutamine on a rotation shaker. Cells were passaged
every 2–3 days.
2.2. Antibodies
Recombinant His-tagged rat GNE was used as an antigen for immu-

nizing rabbits (Pineda Antibody Services, Berlin, Germany). Anti-
GNE antibody was purified from rabbit serum using His fusion pro-
tein (His-GNE) bound to CNBr-activated Sepharose� 4B (Pharmacia)
according to the manufacturer’s instructions.

Antibodies to CRMP1 were purchased from Upstate (clone Y21)
and immunoglobulins conjugated to HRP were obtained from Dia-
nova.
2.3. Yeast two hybrid assay
The yeast two hybrid assaying was performed in an automated ma-

trix format. The LexA DNA binding domain fusion protein (‘‘bait’’,
GNE-fragment) was expressed in the yeast strain L40ccua [MATa]
and screened against a non-redundant set of �5500 of human activa-
tion domain (AD) fusion proteins in L40ccua [MATa] in an interaction
mating matrix approach as described previously [18]. Interactions were
detected by assaying the simultaneous activation of the (lexAop)4-
HIS3 and (lexAop)8-URA3 reporter genes on SDIV selection medium.
The activity of the (lexAop)8-lacZ reporter was measured using a ß-
galactosidase assay after growth on SDIV agar in an additional exper-
iment [19].
2.4. Construction of the GNE domains
The construction of the GNE and the GNE-domains needed for the

two-hybrid screen was described in Blume et al. [8]. Fig. 1 summarizes
all domains and constructs used in this study.
100 200 300 400 500 600 700
number of amino acids

fragment

1 400 2
1 722 1

407 722 3
200 500 4

1 180 5
96 313 6

260 400 7
407 560 8

506 660 9

610 722 10
1 313 11

96 400 12

407 660 13
506 722 14

Fig. 1. GNE constructs used for the two-hybrid assay. Fragment 1
contains the entire sequence of the GNE. Fragment 2 represents the
epimerase domain of GNE, whereas fragment 3 represents the kinase
domain. Numbers represent the amino acids.
2.5. Preparation of cell extracts
Cells were harvested by centrifugation at 900 rpm for 3 min and

washed once in PBS. The pellet was resuspended in lysis buffer (PBS,
1 mM PMSF, 1:500 proteinase inhibitory cocktail (Sigma), and cells
were sonicated and centrifuged (13000 rpm, 10 min, 4 �C). The super-
natant was used for coimmunoprecipitation. Sf900 insect cells were
harvested by centrifugation (1000 rpm, 15 min). The pellet was resus-
pended in lysis buffer (10 mM NaPi pH 7.5, 1 mM EDTA, 1 mM
DTT, 1 mM PMSF), then disrupted in a French press, followed by
centrifugation (13000 rpm, 15 min).

2.6. Transfection
HL60-cells expressing or not expressing GNE were transiently trans-

fected with pcDNA3.1/Zeo-GNE plasmid DNA using the Nukleofek-
tor�-Technology of Amaxa Biosystems (transfection program T-19),
using 2 · 106 cells per transfection. Cells were resuspended in 100 ll
Nukleofektor� solution V supplemented with 5 lg Plasmid-DNA,
then transferred to 1.5 ml pre-warmed medium and incubated for 24
or 48 h at 37 �C and 5% CO2 prior to further investigation.

2.7. Generation of baculoviruses and protein expression in insect cells
Baculovirus for expression of His-GNE was obtained as described

[8]. For generation of a recombinant baculovirus for the expression
of GST, the GST-cDNA was amplified by a PCR using the primers
5 0-GGA TCC GGA TCC ATG TCC CCT ATA CTA G-3 0 and 5 0-
GGA TCC GGA TCC ATG TCC CCT ATA CTA G-3 0, and the
pGEX4T-2 vector (GE Healthcare) as a template. The PCR was per-
formed using the Accuprime Pfx SuperMix (Invitrogen) following
the maufacturer’s instructions. The PCR product was first cloned into
the pCR-Blunt vector (Invitrogen), and then into the pFastBac1 vector
(Invitrogen) using the restriction enzymes BamHI and EcoRI. After
verifying the correct cDNA sequence, baculovirus was generated by
the Bac-To-Bac method as described [8].

For generation of a recombinant baculovirus for the expression of
GST fusion protein (GST-PLZF), the PLZF-cDNA was amplified
by a PCR using the degenerated primers 5 0-GTC GAC GTC GAC
AGA TGG ATC TGA CAA AAA TGG-30 and 5 0-AAG CTT AAG
CTT TCA CAC ATA GCA CAG GTA-3 0, and the cDNA clone IR-
AKp961P0229QQ2 (Deutsches Ressourcenzentrum für Genomfors-
chung, Berlin, Germany) as a template. The PCR was performed
using the Accuprime Pfx SuperMix (Invitrogen). The PCR product
was first cloned into the pCR-Blunt vector (Invitrogen), and then into
the pFastBac1-GST vector (see above) using the restriction enzymes
SalI and HindIII. After verifying the correct cDNA sequence, baculo-
virus was generated by the Bac-To-Bac method.

Protein expression in insect (Sf9) cells was performed as described
[8]. For pilot expression insect cells were infected with baculoviruses
at an MOI of 1 for 3 days. Cells were analyzed by SDS–PAGE and
revealed similar expression levels for His-GNE, GST and GST-PLZF.
Co-expressions were performed by infection of insect cells with the
indicated combinations of two baculoviruses under the same condi-
tions, and the cells were then applied to GST pull-down assays.
2.8. Coimmunoprecipitation
Protein A Sepharose (Amersham Biosciences) was washed three

times with PBS then incubated with the cell extracts for 1 h at room
temperature on a rotator. The Sepharose was centrifuged (900 rpm,
3 min) and washed three times with PBS. The resulting pellet was
resuspended in 50 ll SDS loading buffer and incubated at 95 �C for
5 min. Coimmunoprecipitation was analyzed by separating the result-
ing mixture on SDS–PAGE and by Western blotting using anti-GNE
and anti-CRMP1 (Upstate) antibodies.
2.9. GST pull-down assay
GST-PLZF and His-GNE were coexpressed in Sf900 insect cells [8].

Cells were collected by centrifugation (1000 rpm, 15 min) and dis-
rupted in a French press. After centrifugation (13000 rpm, 10 min,
4 �C) the supernatant was used for pull-down assays. Glutathione
Sepharose� 4 Fast Flow (Amersham Biosciences) was washed three
times with PBS then incubated with the supernatant from the cell
extracts for 1 h at room temperature on a rotator. The Sepharose
was centrifuged (900 rpm, 3 min) and washed three times with PBS.
The resulting pellet was resuspended in 50 ll SDS loading buffer and
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incubated at 95 �C for 5 min. The pull-down assay was analyzed by
separating the resulting mixture on SDS–PAGE and by Western blot-
ting using anti-GST (Sigma) and anti-His (Qiagen) antibodies.

2.10. Immunoblotting
Samples were separated on SDS–PAGE and transferred to nitrocel-

lulose filters by Western blotting. The blots were blocked with 5% fat-
free dry milk in TBS-Tween for 1 h at room temperature with shaking.
Blots were washed three times in TBS-Tween, and then incubated with
primary antibody in 5% BSA in TBS-Tween overnight at 4 �C with
shaking. After washing, blots were incubated with secondary antibody
in TBS-Tween for 1 h at room temperature with shaking. Blots were
washed three times with TBS-Tween and proteins were detected by
enhanced chemiluminescence (Amersham Buchler) according to the
manufacturer’s instructions and visualized by exposing the blots to a
Fuji imager system (LAS) for time periods between 3 and 10 min.
3. Results

3.1. Characterization of GNE-specific antibodies

Our many attempts to generate GNE-specific antibodies

showed a low success rate. However, by immunizing rabbits

with GNE expressed in Sf900 cells we generated highly specific

GNE antibodies. With these antibodies we were able to detect

GNE after immunoprecipitation in mouse embryonic stem

cells but not in mouse embryonic stem cells derived from

GNE-deficient mice (Fig. 2A). When overexpressing rat

GNE in HL60-cells we could detect strong signal after immu-

noprecipitation (Fig. 2B). We also were able to detect GNE in

untransfected HL60- or PC12-cells after immunoprecipitation,

indicating that our antibodies do recognize at least mouse

(embryonic stem cells), rat (PC12-cells) and human (HL60-

cells) GNE (data not shown). The fact that we did not detect

GNE in direct immunoblotting experiments indicates the very

low expression of GNE in non-transfected cells (data not

shown). The low expression of GNE was already shown for

all tissues investigated during the purification and cloning of

GNE in 1997 [5]. The activity of GNE in most organs includ-
KO WT
A

-GNE +GNE

B

-GNE-

Fig. 2. Characterization of GNE-specific antibodies. A. GNE was
immunoprecipitated from cytosol of mouse embryonic stem cells (WT)
and GNE-deficient mouse embryonic stem cells (KO). Precipitates
were analyzed by Western blot. Note that in GNE-deficient mouse
embryonic stem cells no GNE is detectable. B. HL60 cells were
transfected with cDNA encoding rat GNE. Lysates of transfected
(+GNE) and untransfected cells (�GNE) were analyzed after immu-
noprecipitation by Western blot.

Table 1
GNE-interacting molecules identified in the yeast two-hybrid assay

Bait Prey clone (protein) Swiss-Prot entry Selection medium b-

1 299b (PLZF) ZBT16_human + +
1 452b (RIF1) RIF1_human + +
3 132a (CRMP1) DPYL1_human + +
3 419b (CRMP1) DPYL1_human + +
3 16E09 (KIAA1549) Q5BJD6_human + +

The numbering of the baits is according the numbering of the GNE fragme
ing skeletal muscle was below the detection limit of 100 lU/mg

tissue [5]. The lowest expression of GNE m-RNA was found in

human skeletal muscle [6]. However, our antibodies have been

shown to detect both native and denatured GNE from mouse,

rat and human GNE.

3.2. GNE-interacting proteins

Sialylation seems to be a prerequisite for life since inactiva-

tion of the key enzyme of Sia-biosynthesis, GNE, causes

embryonic lethality [13]. However, it is not clear at present

whether the decrease in sialylation, the absence of the GNE

protein or both are responsible for the embryonic lethality in

GNE-deficient mice. Heterozygous GNE-deficient mice pos-

sessing only 50% GNE-activity are viable, although they

express 25% less Sia on their cell surfaces compared to wild-

type animals [20]. This is of special interest because mutations

in the GNE cause HIBM, but no other defect in any organ due

to missing or reduced sialylation has been detected in HIBM-

patients so far. Since it is well accepted that protein–protein

interactions regulate the behavior of cells, we tried to identify

proteins that directly interact with the GNE.

We constructed 14 fragments of the rat GNE (Fig. 1), which

were used as baits in a yeast two-hybrid assay, and screened a

prey matrix containing more than 5500 human cDNAs [18].

The matrix was assembled by individual subcloning of a

non-redundant set of cDNA fragments from a human fetal

brain library (HEx1 [21]) and by ‘‘GATEWAY recombina-

tional cloning’’ of full-length human open reading frames from

entry vectors into activation domain (AD) yeast two-hybrid

assay vectors. The yeast two-hybrid assay protein matrix is

an unbiased, representative subset of the human genome with

respect to ORF length and Gene Ontology annotation [18]. In

the matrix screening procedure, all prey proteins have been

tested for interaction with the GNE baits individually by inter-

action mating so that each interacting pair has the same prob-

ability of being identified [22]. The interactions found in the

screening procedure were retested in an independent, second

yeast two-hybrid assay. Yeast two-hybrid interactions between

four different prey proteins and bait fragment 1 (representing

the entire GNE) or bait fragment 3 (representing the kinase

domain of the GNE) were positive in both assays. Identified

prey sequences are the promyelocytic leukemia zinc finger pr-

otein (PLZF), the (RIF1), two independent clones of the col-

lapsin response mediator protein 1 (CRMP-1) and KIAA

1549 (Table 1).

3.3. GNE interacts directly with PLZF

To verify GNE-PLZF interactions, we expressed PLZF

fused to GST and GNE with a His-tag. Both fusion proteins

were further used for pull-down assays (Fig. 3). The GST-

fused PLZF was coexpressed together with the His-tagged
Galactosidase-assay Amino acid number of the Swiss-Prot entry

380–673
455–739
390–572
345–572

1–110

nts in Fig. 2.
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GST-PLZF -

Control-GST -

His-GNE -

Fig. 3. Pull-down of his-tag GNE with GST-PLZF. GST fusion
protein (GST-PLZF) and His fusion protein (His-GNE) were coex-
pressed in Sf900 insect cells. Cells were lysed and lysate (2 mg/ml)
containing both his-tag GNE and GST-PLZF or GNE and GST-
control were incubated for 1 h. Mixtures of molecules were incubated
with GST-coupled to Sepharose. Precipitated proteins were separated
by SDS–PAGE and immunoblotted using anti GST-antibodies (lane 1)
or anti his antibodies (lane 2). For control we used a control GST-
protein instead of GNE. Precipitated proteins were again separated by
SDS–PAGE and immunoblotted using anti GST-antibodies (lane 3) or
anti-his antibodies (lane 4).
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GNE in Sf900 cells and the GST-fusion portion was then pre-

cipitated. In this precipitate we identified both PLZF (lane 1)

and GNE (lane 2). As a control, GNE with a His-tag was inc-

ubated with the GST-fusion protein without the PLZF do-

main. In these precipitates we found only the GST fusion

domain (lane 3) but not GNE (lane 4), demonstrating that

GNE with a His-tag does not unspecifically bind to the GST

fusion portion.

Coimmunoprecipitation is also one of the accepted methods

for verifying protein–protein interactions at the cellular level.

Unfortunately, we could not detect PLZF-specific bands by

Western blot analysis after coimmunoprecipitations using sev-

eral cell lines including GNE-overexpressing HL60 cells, PC12

cells or ES cells (data not shown).

3.4. CRMP-1 can be coimmunoprecipitated together with GNE

To verify the interaction between GNE and CRMP1 in a cel-

lular environment, we performed coimmunoprecipitation

experiments using rat PC12-cells. CRMP1 is highly expressed

in PC12 cells (Fig. 4A). After enrichment of GNE by immuno-

precipitation we were able to detect GNE in PC12-cells
CRMP1
GNE

21B CA

CRMP1

21

Fig. 4. Coimmunoprecipitation of GNE with CRMP1. A. Cytosol of
PC12 cells was analyzed using anti-CRMP1 antibodies. B. Cytosol of
PC12 cells was prepared and GNE was precipitated using polyclonal
anti-GNE antibodies and detected by Western blot (lane 1). For
control a precipitation was performed using a mouse anti-rabbit
antibody and no GNE could be detected (lane 2). C. GNE precipitates
were analyzed using a CRMP1-specific antibody. CRMP1 could be
detected in the GNE-precipitates (lane 1), but not in the control
precipitate (lane 2).
(Fig. 4B, lane 1). As a negative control, a precipitation was

performed with a mouse anti-rabbit antibody and no GNE

could be detected (Fig. 4B, lane 2). When analyzing this sam-

ple with a CRMP1-specific antibody, we detected CRMP1 in

the GNE-precipitates (Fig. 4C, lane 1), but no CRMP1 in

the control precipitate (Fig. 4C, lane 2). Our results demon-

strate that CRMP1 was coimmunoprecipitated with GNE

from PC12 cells.
4. Discussion

Sia is the most common naturally occurring terminal carbo-

hydrate of a variety of glycoconjugates [2]. The aim of our

study was to find novel functions of GNE, independent of its

function as a key enzyme of Sia biosynthesis. For this purpose,

we searched for GNE-interacting proteins by performing a

yeast two-hybrid screen. We identified CRMP1 and PLZF as

interacting molecules and could verify the interactions between

CRMP1 or PLZF with GNE using pull-down assays or coim-

munoprecipitations. Furthermore, we generated highly specific

antibodies to GNE and found that GNE is expressed at very

low levels in several cell lines.

CRMP1 belongs to a family of proteins (CRMP1-5) and is

very similar to the Ulip protein (mouse), TOAD-64 (rat) or

Unc-33 (C. elegans) [23,24]. The human members of the

CRMP family are represented by the family of the dihydropyr-

imidinase-related proteins [25]. The first indication that Sia

biosynthesis and CRMP proteins are linked was provided by

experiments in which the incubation of PC12 cells with Sia pre-

cursors resulted in reduced expression of TOAD-64 [26].

CRMP1 is mainly expressed within the nervous system [24],

but also in a variety of lung tumors with high invasive poten-

tial [27,28]. The interaction of GNE and CRMP1 might there-

fore be of interest in the progression of (lung)-cancer.

Furthermore, CRMP1 has been shown to be involved in the

organization of the cytoskeleton by interacting with the rho

kinase a [29], but is not known whether the interaction of

GNE with CRMP1 modulates its interaction with the rho

kinase a, in which case GNE could be involved in the organi-

zation of the cytoskeleton.

Whether CRMP1 is participating in the onset or progression

of HIBM or other muscle defects is not known. But it is gen-

erally accepted that CRMP1 and related proteins are involved

in cell differentiation. Therefore, one could speculate that a dis-

turbed interaction of CRMP1 with a mutated GNE plays a

role in onset or progression of HIBM.

PLZF is a transcription factor notable for its BTB (BR-C,

ttk, bab/Pox) domain [30]. It regulates the expression of Hox

genes, which play a crucial role during development [31,32].

Very recent studies suggest that BTB domains interact with

cullin3 [33,34]. Cullin3 is a component of the E3-ligases, which

are involved in the ubiquitinylation of proteins. Ubiquitinyla-

tion is a very important modification of proteins. Monoubiqui-

tinylation is involved in cellular trafficking of proteins [35] and

protein phosphorylation [36]. In contrast, polyubiquitinylation

is a signal for degradation by the proteasome [37]. Binding of

PLZF to GNE might therefore have consequences for the

localization of GNE or for protein degradation. The localiza-

tion of GNE is still not understood. Sia is biosynthesized in the

cytosol and GNE is also mainly expressed in the cytosol. How-

ever, the activation of Sia with CMP occurs within the nucleus
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and Krause and coworkers [11] found GNE also in the

nucleus. Nevertheless, it is possible to speculate about the

interaction between PLZF and GNE and their role during pro-

tein degradation. HIBM patients show abnormal accumula-

tion of proteins in muscles [38]. Misrouted GNE or PLZF

could interact with each other thus disturbing the balance

between polyubiquitinylation and degradation via the protea-

some and thereby be responsible for the accumulation of pro-

teins. Research on PLZF focuses on acute promyelocytic

leukemia. Unfortunately, nothing is known on muscle disor-

ders and a possible role of PLZF. However, PLZF knockout

mice display distinct musculoskeletal defects [39] and myogen-

esis in mice is accompanied by increased expression of LAZ3, a

protein very similar to PLZF [40]. Finally, Inoue and cowork-

ers could demonstrate, very recently a role of PLZF in early

osteoblastic differentiation [41].

Taken together, we here propose that GNE might not only

be the key enzyme of Sia synthesis, but it might also regulate

fundamental cellular functions by interacting during develop-

ment with key proteins such as CRMP1 or PLZF.
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