2,046 research outputs found
The impact of subsidies on the ecological sustainability and future profits from North Sea fisheries
Background: This study examines the impact of subsidies on the profitability and ecological stability of the North Sea fisheries over the past 20 years. It shows the negative impact that subsidies can have on both the biomass of important fish species and the possible profit from fisheries. The study includes subsidies in an ecosystem model of the North Sea and examines the possible effects of eliminating fishery subsidies.Methodology/Principal Findings: Hindcast analysis between 1991 and 2003 indicates that subsidies reduced the profitability of the fishery even though gross revenue might have been high for specific fisheries sectors. Simulations seeking to maximise the total revenue between 2004 and 2010 suggest that this can be achieved by increasing the effort of Nephrops trawlers, beam trawlers, and the pelagic trawl-and-seine fleet, while reducing the effort of demersal trawlers. Simulations show that ecological stability can be realised by reducing the effort of the beam trawlers, Nephrops trawlers, pelagic- and demersal trawl-and-seine fleets. This analysis also shows that when subsidies are included, effort will always be higher for all fleets, because it effectively reduces the cost of fishing.Conclusions/Significance: The study found that while removing subsidies might reduce the total catch and revenue, it increases the overall profitability of the fishery and the total biomass of commercially important species. For example, cod, haddock, herring and plaice biomass increased over the simulation when optimising for profit, and when optimising for ecological stability, the biomass for cod, plaice and sole also increased. When subsidies are eliminated, the study shows that rather than forcing those involved in the fishery into the red, fisheries become more profitable, despite a decrease in total revenue due to a loss of subsidies from the government
Polynomial conjunctive query rewriting under unary inclusion dependencies
Ontology-based data access (OBDA) is widely accepted as an important ingredient of the new generation of information systems. In the OBDA paradigm, potentially incomplete relational data is enriched by means of ontologies, representing intensional knowledge of the application domain. We consider the problem of conjunctive query answering in OBDA. Certain ontology languages have been identified as FO-rewritable (e.g., DL-Lite and sticky-join sets of TGDs), which means that the ontology can be incorporated into the user's query, thus reducing OBDA to standard relational query evaluation. However, all known query rewriting techniques produce queries that are exponentially large in the size of the user's query, which can be a serious issue for standard relational database engines. In this paper, we present a polynomial query rewriting for conjunctive queries under unary inclusion dependencies. On
the other hand, we show that binary inclusion dependencies do not admit
polynomial query rewriting algorithms
PSF calibration requirements for dark energy from cosmic shear
The control of systematic effects when measuring galaxy shapes is one of the
main challenges for cosmic shear analyses. In this context, we study the
fundamental limitations on shear accuracy due to the measurement of the Point
Spread Function (PSF) from the finite number of stars. In order to do that, we
translate the accuracy required for cosmological parameter estimation to the
minimum number of stars over which the PSF must be calibrated. We first derive
our results analytically in the case of infinitely small pixels (i.e.
infinitely high resolution). Then image simulations are used to validate these
results and investigate the effect of finite pixel size in the case of an
elliptical gaussian PSF. Our results are expressed in terms of the minimum
number of stars required to calibrate the PSF in order to ensure that
systematic errors are smaller than statistical errors when estimating the
cosmological parameters. On scales smaller than the area containing this
minimum number of stars, there is not enough information to model the PSF. In
the case of an elliptical gaussian PSF and in the absence of dithering, 2
pixels per PSF Full Width at Half Maximum (FWHM) implies a 20% increase of the
minimum number of stars compared to the ideal case of infinitely small pixels;
0.9 pixels per PSF FWHM implies a factor 100 increase. In the case of a good
resolution and a typical Signal-to-Noise Ratio distribution of stars, we find
that current surveys need the PSF to be calibrated over a few stars, which may
explain residual systematics on scales smaller than a few arcmins. Future
all-sky cosmic shear surveys require the PSF to be calibrated over a region
containing about 50 stars.Comment: 13 pages, 4 figures, accepted by A&
Complex Physics in Cluster Cores: Showstopper for the Use of Clusters for Cosmology?
The influence of cool galaxy cluster cores on the X-ray
luminosity--gravitational mass relation is studied with Chandra observations of
64 clusters in the HIFLUGCS sample. As preliminary results we find (i) a
significant offset of cool core (CC) clusters to the high luminosity (or low
mass) side compared to non-cool core (NCC) clusters, (ii) a smaller scatter of
CC clusters compared to NCC clusters, (iii) a decreasing fraction of CC
clusters with increasing cluster mass, (iv) a reduced scatter in the
luminosity--mass relation for the entire sample if the luminosity is scaled
properly with the central entropy. The implications of these results on the
intrinsic scatter are discussed.Comment: 6 pages; to appear in the proceedings of the conference Heating vs.
Cooling in Galaxies and Clusters of Galaxies, edited by H. Boehringer, P.
Schuecker, G.W. Pratt, and A. Finoguenov. Dedicated to the memory of Peter
Schuecke
A bias in cosmic shear from galaxy selection: results from ray-tracing simulations
We identify and study a previously unknown systematic effect on cosmic shear
measurements, caused by the selection of galaxies used for shape measurement,
in particular the rejection of close (blended) galaxy pairs. We use ray-tracing
simulations based on the Millennium Simulation and a semi-analytical model of
galaxy formation to create realistic galaxy catalogues. From these, we quantify
the bias in the shear correlation functions by comparing measurements made from
galaxy catalogues with and without removal of close pairs. A likelihood
analysis is used to quantify the resulting shift in estimates of cosmological
parameters. The filtering of objects with close neighbours (a) changes the
redshift distribution of the galaxies used for correlation function
measurements, and (b) correlates the number density of sources in the
background with the density field in the foreground. This leads to a
scale-dependent bias of the correlation function of several percent,
translating into biases of cosmological parameters of similar amplitude. This
makes this new systematic effect potentially harmful for upcoming and planned
cosmic shear surveys. As a remedy, we propose and test a weighting scheme that
can significantly reduce the bias.Comment: 9 pages, 9 figures, version accepted for publication in Astronomy &
Astrophysic
Limitations of model fitting methods for lensing shear estimation
Gravitational lensing shear has the potential to be the most powerful tool
for constraining the nature of dark energy. However, accurate measurement of
galaxy shear is crucial and has been shown to be non-trivial by the Shear
TEsting Programme. Here we demonstrate a fundamental limit to the accuracy
achievable by model-fitting techniques, if oversimplistic models are used. We
show that even if galaxies have elliptical isophotes, model-fitting methods
which assume elliptical isophotes can have significant biases if they use the
wrong profile. We use noise-free simulations to show that on allowing
sufficient flexibility in the profile the biases can be made negligible. This
is no longer the case if elliptical isophote models are used to fit galaxies
made up of a bulge plus a disk, if these two components have different
ellipticities. The limiting accuracy is dependent on the galaxy shape but we
find the most significant biases for simple spiral-like galaxies. The
implications for a given cosmic shear survey will depend on the actual
distribution of galaxy morphologies in the universe, taking into account the
survey selection function and the point spread function. However our results
suggest that the impact on cosmic shear results from current and near future
surveys may be negligible. Meanwhile, these results should encourage the
development of existing approaches which are less sensitive to morphology, as
well as methods which use priors on galaxy shapes learnt from deep surveys.Comment: 10 pages, 8 figure
Evolution and Impact of Bars over the Last Eight Billion Years: Early Results from GEMS
Bars drive the dynamical evolution of disk galaxies by redistributing mass
and angular momentum, and they are ubiquitous in present-day spirals. Early
studies of the Hubble Deep Field reported a dramatic decline in the rest-frame
optical bar fraction f_opt to below 5% at redshifts z>0.7, implying that disks
at these epochs are fundamentally different from present-day spirals. The GEMS
bar project, based on ~8300 galaxies with HST-based morphologies and accurate
redshifts over the range 0.2-1.1, aims at constraining the evolution and impact
of bars over the last 8 Gyr. We present early results indicating that f_opt
remains nearly constant at ~30% over the range z=0.2-1.1,corresponding to
lookback times of ~2.5-8 Gyr. The bars detected at z>0.6 are primarily strong
with ellipticities of 0.4-0.8. Remarkably, the bar fraction and range of bar
sizes observed at z>0.6 appear to be comparable to the values measured in the
local Universe for bars of corresponding strengths. Implications for bar
evolution models are discussed.Comment: Submitted June 25, 2004. 10 pages 5 figures. To appear in Penetrating
Bars through Masks of Cosmic Dust: The Hubble Tuning Fork Strikes a New Note,
eds. D. Block, K. Freeman, R. Groess, I. Puerari, & E.K. Block (Dordrecht:
Kluwer), in pres
Cosmic Shear Analysis with CFHTLS Deep data
We present the first cosmic shear measurements obtained from the T0001
release of the Canada-France-Hawaii Telescope Legacy Survey. The data set
covers three uncorrelated patches (D1, D3 and D4) of one square degree each
observed in u*, g', r', i' and z' bands, out to i'=25.5. The depth and the
multicolored observations done in deep fields enable several data quality
controls. The lensing signal is detected in both r' and i' bands and shows
similar amplitude and slope in both filters. B-modes are found to be
statistically zero at all scales. Using multi-color information, we derived a
photometric redshift for each galaxy and separate the sample into medium and
high-z galaxies. A stronger shear signal is detected from the high-z subsample
than from the low-z subsample, as expected from weak lensing tomography. While
further work is needed to model the effects of errors in the photometric
redshifts, this results suggests that it will be possible to obtain constraints
on the growth of dark matter fluctuations with lensing wide field surveys. The
various quality tests and analysis discussed in this work demonstrate that
MegaPrime/Megacam instrument produces excellent quality data. The combined Deep
and Wide surveys give sigma_8= 0.89 pm 0.06 assuming the Peacock & Dodds
non-linear scheme and sigma_8=0.86 pm 0.05 for the halo fitting model and
Omega_m=0.3. We assumed a Cold Dark Matter model with flat geometry.
Systematics, Hubble constant and redshift uncertainties have been marginalized
over. Using only data from the Deep survey, the 1 sigma upper bound for w_0,
the constant equation of state parameter is w_0 < -0.8.Comment: 14 pages, 16 figures, accepted A&
- …
