307 research outputs found

    Phase transitions in biological membranes

    Full text link
    Native membranes of biological cells display melting transitions of their lipids at a temperature of 10-20 degrees below body temperature. Such transitions can be observed in various bacterial cells, in nerves, in cancer cells, but also in lung surfactant. It seems as if the presence of transitions slightly below physiological temperature is a generic property of most cells. They are important because they influence many physical properties of the membranes. At the transition temperature, membranes display a larger permeability that is accompanied by ion-channel-like phenomena even in the complete absence of proteins. Membranes are softer, which implies that phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal propagation phenomena related to nerve pulses are strongly enhanced. The position of transitions can be affected by changes in temperature, pressure, pH and salt concentration or by the presence of anesthetics. Thus, even at physiological temperature, these transitions are of relevance. There position and thereby the physical properties of the membrane can be controlled by changes in the intensive thermodynamic variables. Here, we review some of the experimental findings and the thermodynamics that describes the control of the membrane function.Comment: 23 pages, 15 figure

    Profiling of Glycan Receptors for Minute Virus of Mice in Permissive Cell Lines Towards Understanding the Mechanism of Cell Recognition

    Get PDF
    The recognition of sialic acids by two strains of minute virus of mice (MVM), MVMp (prototype) and MVMi (immunosuppressive), is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA) capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM). Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3′SIA-LN) and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3′SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3′SIA-LeX identified in a previous glycan microarray screen

    From supported membranes to tethered vesicles: lipid bilayers destabilisation at the main transition

    Full text link
    We report results concerning the destabilisation of supported phospholipid bilayers in a well-defined geometry. When heating up supported phospholipid membranes deposited on highly hydrophilic glass slides from room temperature (i.e. with lipids in the gel phase), unbinding was observed around the main gel to fluid transition temperature of the lipids. It lead to the formation of relatively monodisperse vesicles, of which most remained tethered to the supported bilayer. We interpret these observations in terms of a sharp decrease of the bending rigidity modulus Îş\kappa in the transition region, combined with a weak initial adhesion energy. On the basis of scaling arguments, we show that our experimental findings are consistent with this hypothesis.Comment: 11 pages, 3 figure

    Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes

    Get PDF
    Constant-pressure molecular-dynamics simulations of phospholipid membranes in the fluid phase reveal strong correlations between equilibrium fluctuations of volume and energy on the nanosecond time-scale. The existence of strong volume-energy correlations was previously deduced indirectly by Heimburg from experiments focusing on the phase transition between the fluid and the ordered gel phases. The correlations, which are reported here for three different membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two temperatures showing that the correlation coefficient increases as the phase transition is approached

    The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes

    Get PDF
    In the proximity of melting transitions of artificial and biological membranes fluctuations in enthalpy, area, volume and concentration are enhanced. This results in domain formation, changes of the elastic constants, changes in permeability and slowing down of relaxation processes. In this study we used pressure perturbation calorimetry to investigate the relaxation time scale after a jump into the melting transition regime of artificial lipid membranes. This time corresponds to the characteristic rate of domain growth. The studies were performed on single-component large unilamellar and multilamellar vesicle systems with and without the addition of small molecules such as general anesthetics, neurotransmitters and antibiotics. These drugs interact with membranes and affect melting points and profiles. In all systems we found that heat capacity and relaxation times are related to each other in a simple manner. The maximum relaxation time depends on the cooperativity of the heat capacity profile and decreases with a broadening of the transition. For this reason the influence of a drug on the time scale of domain formation processes can be understood on the basis of their influence on the heat capacity profile. This allows estimations of the time scale of domain formation processes in biological membranes.Comment: 12 pages, 6 figure

    Penetration of action potentials during collision in the median and lateral giant axons of invertebrates

    Full text link
    The collisions of two simultaneously generated impulses in the giant axons of both earthworms and lobster propagating in orthodromic and antidromic direction were investigated. The experiments have been performed on the extracted ventral cords of Lumbricus terrestris and the abdominal ventral cord of lobster, Homarus americanus, by using external stimulation and recording. The collision of two nerve impulses of orthodromic and antidromic propagation didn't result in the annihilation of the two signals contrary to the common notion that is based on the existence of a refractory period in the well-known Hodgkin-Huxley theory. However, the results are in agreement with the electromechanical soliton theory for nerve pulse propagation as suggested by Heimburg and Jackson (Proc. Natl. Acad. Sci. USA 102, 9790 (2005)).Comment: 12 pages, 10 figure

    Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A2 Action at the Single Molecule Level

    Get PDF
    We monitored the action of phospholipase A2 (PLA2) on L- and D-dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers by mounting a Langmuir-trough on a wide-field fluorescence microscope with single molecule sensitivity. This made it possible to directly visualize the activity and diffusion behavior of single PLA2 molecules in a heterogeneous lipid environment during active hydrolysis. The experiments showed that enzyme molecules adsorbed and interacted almost exclusively with the fluid region of the DPPC monolayers. Domains of gel state L-DPPC were degraded exclusively from the gel-fluid interface where the build-up of negatively charged hydrolysis products, fatty acid salts, led to changes in the mobility of PLA2. The mobility of individual enzymes on the monolayers was characterized by single particle tracking (SPT). Diffusion coefficients of enzymes adsorbed to the fluid interface were between 3 mu m^2/s on the L-DPPC and 4.6 mu m^/s on the D-DPPC monolayers. In regions enriched with hydrolysis products the diffusion dropped to approx. 0.2 mu m^2/s. In addition, slower normal and anomalous diffusion modes were seen at the L-DPPC gel domain boundaries where hydrolysis took place. The average residence times of the enzyme in the fluid regions of the monolayer and on the product domain were between approx. 30 and 220 ms. At the gel domains it was below the experimental time resolution, i.e. enzymes were simply reflected from the gel domains back into solution.Comment: 10 pages, 10 figure

    Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity

    Get PDF
    Magnetic fields generated by human and animal organs, such as the heart, brain and nervous system carry information useful for biological and medical purposes. These magnetic fields are most commonly detected using cryogenically-cooled superconducting magnetometers. Here we present the frst detection of action potentials from an animal nerve using an optical atomic magnetometer. Using an optimal design we are able to achieve the sensitivity dominated by the quantum shot noise of light and quantum projection noise of atomic spins. Such sensitivity allows us to measure the nerve impulse with a miniature room-temperature sensor which is a critical advantage for biomedical applications. Positioning the sensor at a distance of a few millimeters from the nerve, corresponding to the distance between the skin and nerves in biological studies, we detect the magnetic field generated by an action potential of a frog sciatic nerve. From the magnetic field measurements we determine the activity of the nerve and the temporal shape of the nerve impulse. This work opens new ways towards implementing optical magnetometers as practical devices for medical diagnostics.Comment: Main text with figures, and methods and supplementary informatio

    Structure of symmetric and asymmetric "ripple" phases in lipid bilayers

    Full text link
    We reproduce the symmetric and asymmetric ``rippled'' Pβ′P_{\beta'} states of lipid membranes by Monte Carlo simulations of a coarse-grained molecular model for lipid-solvent mixtures. The structure and properties compare favorably with experiments. The asymmetric ripple state is characterized by a periodic array of fully interdigitated ``defect'' lines. The symmetric ripple state maintains a bilayer structure, but is otherwise structurally similar. The formation of both ripple states is driven by the propensity of lipid molecules with large head groups to exhibit splay.Comment: 4 pages, 4 figure
    • …
    corecore