307 research outputs found
Phase transitions in biological membranes
Native membranes of biological cells display melting transitions of their
lipids at a temperature of 10-20 degrees below body temperature. Such
transitions can be observed in various bacterial cells, in nerves, in cancer
cells, but also in lung surfactant. It seems as if the presence of transitions
slightly below physiological temperature is a generic property of most cells.
They are important because they influence many physical properties of the
membranes. At the transition temperature, membranes display a larger
permeability that is accompanied by ion-channel-like phenomena even in the
complete absence of proteins. Membranes are softer, which implies that
phenomena such as endocytosis and exocytosis are facilitated. Mechanical signal
propagation phenomena related to nerve pulses are strongly enhanced. The
position of transitions can be affected by changes in temperature, pressure, pH
and salt concentration or by the presence of anesthetics. Thus, even at
physiological temperature, these transitions are of relevance. There position
and thereby the physical properties of the membrane can be controlled by
changes in the intensive thermodynamic variables. Here, we review some of the
experimental findings and the thermodynamics that describes the control of the
membrane function.Comment: 23 pages, 15 figure
Profiling of Glycan Receptors for Minute Virus of Mice in Permissive Cell Lines Towards Understanding the Mechanism of Cell Recognition
The recognition of sialic acids by two strains of minute virus of mice (MVM), MVMp (prototype) and MVMi (immunosuppressive), is an essential requirement for successful infection. To understand the potential for recognition of different modifications of sialic acid by MVM, three types of capsids, virus-like particles, wild type empty (no DNA) capsids, and DNA packaged virions, were screened on a sialylated glycan microarray (SGM). Both viruses demonstrated a preference for binding to 9-O-methylated sialic acid derivatives, while MVMp showed additional binding to 9-O-acetylated and 9-O-lactoylated sialic acid derivatives, indicating recognition differences. The glycans recognized contained a type-2 Galβ1-4GlcNAc motif (Neu5Acα2-3Galβ1-4GlcNAc or 3′SIA-LN) and were biantennary complex-type N-glycans with the exception of one. To correlate the recognition of the 3′SIA-LN glycan motif as well as the biantennary structures to their natural expression in cell lines permissive for MVMp, MVMi, or both strains, the N- and O-glycans, and polar glycolipids present in three cell lines used for in vitro studies, A9 fibroblasts, EL4 T lymphocytes, and the SV40 transformed NB324K cells, were analyzed by MALDI-TOF/TOF mass spectrometry. The cells showed an abundance of the sialylated glycan motifs recognized by the viruses in the SGM and previous glycan microarrays supporting their role in cellular recognition by MVM. Significantly, the NB324K showed fucosylation at the non-reducing end of their biantennary glycans, suggesting that recognition of these cells is possibly mediated by the Lewis X motif as in 3′SIA-LeX identified in a previous glycan microarray screen
From supported membranes to tethered vesicles: lipid bilayers destabilisation at the main transition
We report results concerning the destabilisation of supported phospholipid
bilayers in a well-defined geometry. When heating up supported phospholipid
membranes deposited on highly hydrophilic glass slides from room temperature
(i.e. with lipids in the gel phase), unbinding was observed around the main gel
to fluid transition temperature of the lipids. It lead to the formation of
relatively monodisperse vesicles, of which most remained tethered to the
supported bilayer. We interpret these observations in terms of a sharp decrease
of the bending rigidity modulus in the transition region, combined
with a weak initial adhesion energy. On the basis of scaling arguments, we show
that our experimental findings are consistent with this hypothesis.Comment: 11 pages, 3 figure
Volume-energy correlations in the slow degrees of freedom of computer-simulated phospholipid membranes
Constant-pressure molecular-dynamics simulations of phospholipid membranes in
the fluid phase reveal strong correlations between equilibrium fluctuations of
volume and energy on the nanosecond time-scale. The existence of strong
volume-energy correlations was previously deduced indirectly by Heimburg from
experiments focusing on the phase transition between the fluid and the ordered
gel phases. The correlations, which are reported here for three different
membranes (DMPC, DMPS-Na, and DMPSH), have volume-energy correlation
coefficients ranging from 0.81 to 0.89. The DMPC membrane was studied at two
temperatures showing that the correlation coefficient increases as the phase
transition is approached
The influence of anesthetics, neurotransmitters and antibiotics on the relaxation processes in lipid membranes
In the proximity of melting transitions of artificial and biological
membranes fluctuations in enthalpy, area, volume and concentration are
enhanced. This results in domain formation, changes of the elastic constants,
changes in permeability and slowing down of relaxation processes. In this study
we used pressure perturbation calorimetry to investigate the relaxation time
scale after a jump into the melting transition regime of artificial lipid
membranes. This time corresponds to the characteristic rate of domain growth.
The studies were performed on single-component large unilamellar and
multilamellar vesicle systems with and without the addition of small molecules
such as general anesthetics, neurotransmitters and antibiotics. These drugs
interact with membranes and affect melting points and profiles. In all systems
we found that heat capacity and relaxation times are related to each other in a
simple manner. The maximum relaxation time depends on the cooperativity of the
heat capacity profile and decreases with a broadening of the transition. For
this reason the influence of a drug on the time scale of domain formation
processes can be understood on the basis of their influence on the heat
capacity profile. This allows estimations of the time scale of domain formation
processes in biological membranes.Comment: 12 pages, 6 figure
Penetration of action potentials during collision in the median and lateral giant axons of invertebrates
The collisions of two simultaneously generated impulses in the giant axons of
both earthworms and lobster propagating in orthodromic and antidromic direction
were investigated. The experiments have been performed on the extracted ventral
cords of Lumbricus terrestris and the abdominal ventral cord of lobster,
Homarus americanus, by using external stimulation and recording. The collision
of two nerve impulses of orthodromic and antidromic propagation didn't result
in the annihilation of the two signals contrary to the common notion that is
based on the existence of a refractory period in the well-known Hodgkin-Huxley
theory. However, the results are in agreement with the electromechanical
soliton theory for nerve pulse propagation as suggested by Heimburg and Jackson
(Proc. Natl. Acad. Sci. USA 102, 9790 (2005)).Comment: 12 pages, 10 figure
Influence of Lipid Heterogeneity and Phase Behavior on Phospholipase A2 Action at the Single Molecule Level
We monitored the action of phospholipase A2 (PLA2) on L- and
D-dipalmitoylphosphatidylcholine (DPPC) Langmuir monolayers by mounting a
Langmuir-trough on a wide-field fluorescence microscope with single molecule
sensitivity. This made it possible to directly visualize the activity and
diffusion behavior of single PLA2 molecules in a heterogeneous lipid
environment during active hydrolysis. The experiments showed that enzyme
molecules adsorbed and interacted almost exclusively with the fluid region of
the DPPC monolayers. Domains of gel state L-DPPC were degraded exclusively from
the gel-fluid interface where the build-up of negatively charged hydrolysis
products, fatty acid salts, led to changes in the mobility of PLA2. The
mobility of individual enzymes on the monolayers was characterized by single
particle tracking (SPT). Diffusion coefficients of enzymes adsorbed to the
fluid interface were between 3 mu m^2/s on the L-DPPC and 4.6 mu m^/s on the
D-DPPC monolayers. In regions enriched with hydrolysis products the diffusion
dropped to approx. 0.2 mu m^2/s. In addition, slower normal and anomalous
diffusion modes were seen at the L-DPPC gel domain boundaries where hydrolysis
took place. The average residence times of the enzyme in the fluid regions of
the monolayer and on the product domain were between approx. 30 and 220 ms. At
the gel domains it was below the experimental time resolution, i.e. enzymes
were simply reflected from the gel domains back into solution.Comment: 10 pages, 10 figure
Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity
Magnetic fields generated by human and animal organs, such as the heart,
brain and nervous system carry information useful for biological and medical
purposes. These magnetic fields are most commonly detected using
cryogenically-cooled superconducting magnetometers. Here we present the frst
detection of action potentials from an animal nerve using an optical atomic
magnetometer. Using an optimal design we are able to achieve the sensitivity
dominated by the quantum shot noise of light and quantum projection noise of
atomic spins. Such sensitivity allows us to measure the nerve impulse with a
miniature room-temperature sensor which is a critical advantage for biomedical
applications. Positioning the sensor at a distance of a few millimeters from
the nerve, corresponding to the distance between the skin and nerves in
biological studies, we detect the magnetic field generated by an action
potential of a frog sciatic nerve. From the magnetic field measurements we
determine the activity of the nerve and the temporal shape of the nerve
impulse. This work opens new ways towards implementing optical magnetometers as
practical devices for medical diagnostics.Comment: Main text with figures, and methods and supplementary informatio
Structure of symmetric and asymmetric "ripple" phases in lipid bilayers
We reproduce the symmetric and asymmetric ``rippled'' states of
lipid membranes by Monte Carlo simulations of a coarse-grained molecular model
for lipid-solvent mixtures. The structure and properties compare favorably with
experiments. The asymmetric ripple state is characterized by a periodic array
of fully interdigitated ``defect'' lines. The symmetric ripple state maintains
a bilayer structure, but is otherwise structurally similar. The formation of
both ripple states is driven by the propensity of lipid molecules with large
head groups to exhibit splay.Comment: 4 pages, 4 figure
- …