453 research outputs found

    Nonlinear analytical flame models with amplitude-dependent time-lag distributions

    Get PDF
    In the present work, we formulate a new method to represent a given Flame Describing Function by analytical expressions. The underlying idea is motivated by the observation that different types of perturbations in a burner travel with different speeds and that the arrival of a perturbation at the flame is spread out over time. We develop an analytical model for the Flame Describing Function, which consists of a superposition of several Gaussians, each characterised by three amplitude-dependent quantities: central time-lag, peak value and standard deviation. These quantities are treated as fitting parameters, and they are deduced from the original Flame Describing Function by using error minimisation and nonlinear optimisation techniques. The amplitude-dependence of the fitting parameters is also represented analytically (by linear or quadratic functions). We test our method by using it to make stability predictions for a burner with well-documented stability behaviour (Noiray's matrix burner). This is done in the time-domain with a tailored Green's function approach

    Rigid Chiral Membranes

    Get PDF
    Statistical ensembles of flexible two-dimensional fluid membranes arise naturally in the description of many physical systems. Typically one encounters such systems in a regime of low tension but high stiffness against bending, which is just the opposite of the regime described by the Polyakov string. We study a class of couplings between membrane shape and in-plane order which break 3-space parity invariance. Remarkably there is only {\it one} such allowed coupling (up to boundary terms); this term will be present for any lipid bilayer composed of tilted chiral molecules. We calculate the renormalization-group behavior of this relevant coupling in a simplified model and show how thermal fluctuations effectively reduce it in the infrared.Comment: 11 pages, UPR-518T (This replaced version has fonts not used removed.

    Instabilities and disorder of the domain patterns in the systems with competing interactions

    Full text link
    The dynamics of the domains is studied in a two-dimensional model of the microphase separation of diblock copolymers in the vicinity of the transition. A criterion for the validity of the mean field theory is derived. It is shown that at certain temperatures the ordered hexagonal pattern becomes unstable with respect to the two types of instabilities: the radially-nonsymmetric distortions of the domains and the repumping of the order parameter between the neighbors. Both these instabilities may lead to the transformation of the regular hexagonal pattern into a disordered pattern.Comment: ReVTeX, 4 pages, 3 figures (postscript); submitted to Phys. Rev. Let

    A Phase-Field Model of Spiral Dendritic Growth

    Full text link
    Domains of condensed-phase monolayers of chiral molecules exhibit a variety of interesting nonequilibrium structures when formed via pressurization. To model these domain patterns, we add a complex field describing the tilt degree of freedom to an (anisotropic) complex-phase-field solidification model. The resulting formalism allows for the inclusion of (in general, non-reflection symmetric) interactions between the tilt, the solid-liquid interface, and the bond orientation. Simulations demonstrate the ability of the model to exhibit spiral dendritic growth.Comment: text plus Four postscript figure file

    High harmonic generation in a gas-filled hollow-core photonic crystal fiber

    Get PDF
    High harmonic generation (HHG) of intense infrared laser radiation (Ferray et al., J. Phys. B: At. Mol. Opt. Phys. 21:L31, 1988; McPherson et al., J. Opt. Soc. Am. B 4:595, 1987) enables coherent vacuum-UV (VUV) to soft-X-ray sources. In the usual setup, energetic femtosecond laser pulses are strongly focused into a gas jet, restricting the interaction length to the Rayleigh range of the focus. The average photon flux is limited by the low conversion efficiency and the low average power of the complex laser amplifier systems (Keller, Nature 424:831, 2003; Südmeyer et al., Nat. Photonics 2:599, 2008; Röser et al., Opt. Lett. 30:2754, 2005; Eidam et al., IEEE J. Sel. Top. Quantum Electron. 15:187, 2009) which typically operate at kilohertz repetition rates. This represents a severe limitation for many experiments using the harmonic radiation in fields such as metrology or high-resolution imaging. Driving HHG with novel high-power diode-pumped multi-megahertz laser systems has the potential to significantly increase the average photon flux. However, the higher average power comes at the expense of lower pulse energies because the repetition rate is increased by more than a thousand times, and efficient HHG is not possible in the usual geometry. So far, two promising techniques for HHG at lower pulse energies were developed: external build-up cavities (Gohle et al., Nature 436:234, 2005; Jones et al., Phys. Rev. Lett. 94:193, 2005) and resonant field enhancement in nanostructured targets (Kim et al., Nature 453:757, 2008). Here we present a third technique, which has advantages in terms of ease of HHG light extraction, transverse beam quality, and the possibility to substantially increase conversion efficiency by phase-matching (Paul et al., Nature 421:51, 2003; Ren et al., Opt. Express 16:17052, 2008; Serebryannikov et al., Phys. Rev. E (Stat. Nonlinear Soft Matter Phys.) 70:66611, 2004; Serebryannikov et al., Opt. Lett. 33:977, 2008; Zhang et al., Nat. Phys. 3:270, 2007). The interaction between the laser pulses and the gas occurs in a Kagome-type Hollow-Core Photonic Crystal Fiber (HC-PCF) (Benabid et al., Science 298:399, 2002), which reduces the detection threshold for HHG to only 200nJ. This novel type of fiber guides nearly all of the light in the hollow core (Couny et al., Science 318:1118, 2007), preventing damage even at intensities required for HHG. Our fiber guided 30-fs pulses with a pulse energy of more than 10μJ, which is more than five times higher than for any other photonic crystal fiber (Hensley et al., Conference on Lasers and Electro-Optics (CLEO), IEEE Press, New York, 2008

    Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells

    Get PDF
    The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.National Institutes of Health (U.S.) (Award 1DP1-MH100706)National Institutes of Health (U.S.) (1R01-DK097768

    Core Circadian Clock Genes Regulate Leukemia Stem Cells in AML

    Get PDF
    Leukemia stem cells (LSCs) have the capacity to self-renew and propagate disease upon serial transplantation in animal models, and elimination of this cell population is required for curative therapies. Here, we describe a series of pooled, in vivo RNAi screens to identify essential transcription factors (TFs) in a murine model of acute myeloid leukemia (AML) with genetically and phenotypically defined LSCs. These screens reveal the heterodimeric, circadian rhythm TFs Clock and Bmal1 as genes required for the growth of AML cells in vitro and in vivo. Disruption of canonical circadian pathway components produces anti-leukemic effects, including impaired proliferation, enhanced myeloid differentiation, and depletion of LSCs. We find that both normal and malignant hematopoietic cells harbor an intact clock with robust circadian oscillations, and genetic knockout models reveal a leukemia-specific dependence on the pathway. Our findings establish a role for the core circadian clock genes in AML.National Institutes of Health (U.S.) (Grant P01 CA066996)National Institutes of Health (U.S.) (Grant R01 HL082945)National Cancer Institute (U.S.) (Grant P30-CA14051

    Endogenous tumor suppressor microRNA-193b: Therapeutic and prognostic value in acute myeloid leukemia

    Get PDF
    Purpose Dysregulated microRNAs are implicated in the pathogenesis and aggressiveness of acute myeloid leukemia (AML). We describe the effect of the hematopoietic stem-cell self-renewal regulating miR-193b on progression and prognosis of AML. Methods We profiled miR-193b-5p/3p expression in cytogenetically and clinically characterized de novo pediatric AML (n = 161) via quantitative real-time polymerase chain reaction and validated our findings in an independent cohort of 187 adult patients. We investigated the tumor suppressive function of miR-193b in human AML blasts, patient-derived xenografts, and miR-193b knockout mice in vitro and in vivo. Results miR-193b exerted important, endogenous, tumor-suppressive functions on the hematopoietic system. miR-193b-3p was downregulated in several cytogenetically defined subgroups of pediatric and adult AML, and low expression served as an independent indicator for poor prognosis in pediatric AML (risk ratio 6 standard error, 20.56 6 0.23; P = .016). miR-193b-3p expression improved the prognostic value of the European LeukemiaNet risk-group stratification or a 17-gene leukemic stemness score. In knockout mice, loss of miR-193b cooperated with Hoxa9/Meis1 during leukemogenesis, whereas restoring miR-193b expression impaired leukemic engraftment. Similarly, expression of miR-193b in AML blasts from patients diminished leukemic growth in vitro and in mouse xenografts. Mechanistically, miR-193b induced apoptosis and a G1/S-phase block in various human AML subgroups by targeting multiple factors of the KIT-RAS-RAF-MEK-ERK (MAPK) signaling cascade and the downstream cell cycle regulator CCND1. Conclusion The tumor-suppressive function is independent of patient age or genetics; therefore, restoring miR-193b would assure high antileukemic efficacy by blocking the entire MAPK signaling cascade while preventing the emergence of resistance mechanisms

    Initial coupling and reaction progression of directly deposited biradical graphene nanoribbon monomers on iodine-passivated versus pristine Ag(111)

    Get PDF
    The development of widely applicable methods for the synthesis of C-C-bonded nanostructures on inert and insulating surfaces is a challenging yet rewarding milestone in the field of on-surface synthesis. This would enable studies of nearly unperturbed covalent nanostructures with unique electronic properties as graphene nanoribbons (GNR) and π-conjugated 2D polymers. The prevalent Ullmann-type couplings are almost exclusively carried out on metal surfaces to lower the temperature required for initial dehalogenation well below the desorption threshold. To overcome the necessity for the activation of monomers on the target surface, we employ a recently developed Radical Deposition Source (RaDeS) for the direct deposition of radicals onto inert surfaces for subsequent coupling by addition reactions. The radicals are generated en route by indirect deposition of halogenated precursors through a heated reactive tube, where the dehalogenation reaction proceeds. Here, we use the ditopic 6,11-diiodo-1,2,3,4-tetraphenyltriphenylene (DITTP) precursor that afforded chevron-like GNR on Au(111) via the usual two-staged reaction comprised of monomer-coupling into covalent polymers and subsequent formation of an extended GNR by intramolecular cyclodehydrogenation (CDH). As a model system for inert surfaces, we use Ag(111) passivated with a closed monolayer of chemisorbed iodine that behaves in an inert manner with respect to dehalogenation reactions and facilitates the progressive coupling of radicals into extended covalent structures. We deposit the DITTP-derived biradicals onto both iodine-passivated and pristine Ag(111) surfaces. While on the passivated surface, we directly observe the formation of covalent polymers, on pristine Ag(111) organometallic intermediates emerge instead. This has decisive consequences for the further progression of the reaction: heating the organometallic chain directly on Ag(111) results in complete desorption, whereas the covalent polymer on iodine-passivated Ag(111) can be transformed into the GNR. Yet, the respective CDH proceeds directly on Ag(111) after thermal desorption of the iodine passivation. Accordingly, future work is aimed at the further development of approaches for the complete synthesis of GNR on inert surfaces
    corecore