15 research outputs found

    Benchtop-Stable Carbyl Iminopyridyl Ni II Complexes for Olefin Polymerization

    No full text
    International audienceDesign of catalysts for Ni-catalyzed olefin polymerization predominantly focuses on ligand design rather than the activation process when attempting to achieve a broader scope of polyolefin micro- and macrostructures. Air-stable alkyl-or aryl-functionalized NiII precatalysts were designed which eliminate the need of in situ alkylating processes and are activated solely by halide abstraction to generate the cationic complex for olefin polymerization. These complexes represent an emerging class of olefin polymerization catalysts, enabling the study of various cocatalysts forming either inner- or outer-sphere ion pairs. It is demonstrated that an organoboron cocatalyst activation produces a well-defined ion pair, which in contrast to ill-defined organoaluminum cocatalysts, can directly activate the complex by halide abstraction to yield comparatively higher molecular weight homo/copolymers. Under high ethylene pressure, broader branching densities and the gradual incorporation of short-chain branches were achieved, circumventing the need for elaborate ligand design and copolymerization with α-olefins. The underlying chain-walking mechanism and ion pair interactions were further elucidated by DFT calculations. A phenyl group on the bridging carbon functioned as a rotational barrier, producing higher molecular weight polymers compared to methyl-substituted analogs. Here, we provide a perspective to manipulate the iminopyridyl NiII system, leveraging ion pair interactions and ligand design to govern polyolefin molecular weights and microstructures

    Influence of type 2 diabetes on local production of inflammatory molecules in adults with and without chronic periodontitis: A cross-sectional study

    Get PDF
    Background Pathological changes in periodontal tissues are mediated by the interaction between microorganisms and the host immune-inflammatory response. Hyperglycemia may interfere with this process. The aim of this study was to compare the levels of 27 inflammatory molecules in the gingival crevicular fluid (GCF) of patients with type 2 diabetes, with and without chronic periodontitis, and of chronic periodontitis subjects without diabetes. A putative correlation between glycated haemoglobin (HbA1c) and levels of the inflammatory molecules was also investigated. Methods The study population comprised a total of 108 individuals, stratified into: 54 with type 2 diabetes and chronic periodontitis (DM + CP), 30 with chronic periodontitis (CP) and 24 with type 2 diabetes (DM). Participants were interviewed with the aid of structured questionnaire. Periodontal parameters (dental plaque, bleeding on probing and periodontal pocket depth) were recorded. The GCF levels of the 27 inflammatory molecules were measured using multiplex micro-bead immunoassay. A glycated haemoglobin (HbA1c) test was performed for patients with diabetes by boronate affinity chromatography. Results After adjustment for potential confounders, the DM + CP group had higher levels of IL-8 and MIP-1β, and lower levels of TNF-α, IL-4, INF-γ, RANTES and IL-7 compared to the CP group. Moreover, the DM + CP group had lower levels of IL-6, IL-7 and G-CSF compared to the DM group. The DM group had higher levels of IL-10, VEGF, and G-CSF compared to the CP group. The levels of MIP-1α and FGF were lower in diabetes patients (regardless of their periodontal status) than in chronic periodontitis subjects without diabetes. Diabetes patients (DM + CP and DM) had higher Th-2/Th-1 ratio compared to the CP group. HbA1c correlated positively with the pro-inflammatory cytokines (Pearson correlation coefficient = 0.27, P value: 0.02). Conclusion Type 2 diabetes and chronic periodontitis may influence the GCF levels of inflammatory molecules synergistically as well as independently. Type 2 diabetes was associated with high Th-2/Th-1 ratio, and modulated the local expression of molecules involved in the anti-inflammatory and healing processes
    corecore