641 research outputs found

    Effect of Conventional Mouthrinses on Initial Bioadhesion to Enamel and Dentin in situ

    Get PDF
    Aim: The study aimed to investigate the effect of a customary fluoride solution, containing sodium fluoride and amine fluoride, on initial biofilm formation on enamel and dentin in situ compared directly to chlorhexidine. Methods: Bovine enamel and dentin specimens were mounted on maxillary splints carried by 9 subjects. After 1 min of pellicle formation, rinses with tap water (control), chlorhexidine (meridol med CHX 0.2%, GABA) and a fluoride mouthrinse (elmex, GABA) were performed for 1 min. Subsequently, the slabs were carried for another 8 h. The adherent bacteria were determined by DAPI staining, live-dead staining and determination of colony-forming units after desorption; glucan formation was visualized with concanavalin A. Additionally, energy-dispersive X-ray spectroscopy (EDX) analysis of the in situ biofilm layers was conducted, and contact angle measurements were performed. Statistical evaluation was performed by means of the Kruskal-Wallis test followed by the Mann-Whitney U test (p < 0.05). Results: In the control group, significantly higher amounts of adherent bacteria were detected on dentin (4.8 x 10⁶ ± 5.4 x 10⁶ bacteria/cmÂČ) than on enamel (1.2 x 10⁶ ± 1.5 x 10⁶ bacteria/cmÂČ , DAPI). Chlorhexidine significantly reduced the amount of adherent bacteria (dentin: 2.8 x 10⁔ ± 3.4 x 10⁔ bacteria/cmÂČ ; enamel: 4.2 x 10⁔ ± 8.7 x 10⁔ bacteria/cmÂČ). Rinses with the fluoride solution also significantly reduced bacterial adherence to dentin (8.1 x 10⁔ ± 1.5 x 10⁶ bacteria/cmÂČ). Fluoride could not be detected by EDX analysis of the biofilms. Fluoride mouthrinsing did not influence the wettability of the pellicle-covered enamel surface. Conclusion: In addition to the reduction of demineralization and antibacterial effects, fluorides inhibit initial biofilm formation on dental hard tissues considerably, especially on dentin

    Generalized Fiducial Inference on the Mean of Zero-Inflated Poisson and Poisson Hurdle Models

    Get PDF
    Zero-inflated and hurdle models are widely applied to count data possessing excess zeros, where they can simultaneously model the process from how the zeros were generated and potentially help mitigate the effects of overdispersion relative to the assumed count distribution. Which model to use depends on how the zeros are generated: zero-inflated models add an additional probability mass on zero, while hurdle models are two-part models comprised of a degenerate distribution for the zeros and a zero-truncated distribution. Developing confidence intervals for such models is challenging since no closed-form function is available to calculate the mean. In this study, generalized fiducial inference is used to construct confidence intervals for the means of zero-inflated Poisson and Poisson hurdle models. The proposed methods are assessed by an intensive simulation study. An illustrative example demonstrates the inference methods

    Diffusion of peroxides through dentine in vitro with and without prior use of a desensitizing varnish

    Get PDF
    Different bleaching regimens are used in dentistry possibly penetrating the dentine and affecting the pulp. The aim of the present study was to investigate peroxide diffusion through dentine pre-treated with a desensitizing varnish (Vivasens¼) in a standardized in vitro setup during application of different bleaching materials. The penetration was tested using 1.3-mm-thick bovine dentine slabs. The following bleaching materials were tested with and without prior application of the desensitizing varnish on the external side of the dentine slabs: Vivastyle, Whitestrips, Simply White, Opalescence (external bleaching), and sodium perborate (internal bleaching, only tested without varnish; n = 8 samples per subgroup). The penetration of peroxides was measured photometrically using 4-aminoantipyrin as a substrate, the penetration of peroxides was monitored over 240 min. All bleaching agents yielded a diffusion of peroxides through the dentine, the kinetics of penetration were approximately linear for all materials tested. The significantly highest diffusion of peroxides was observed with Opalescence, the lowest with sodium perborate. The adoption of the desensitizing varnish reduced the diffusion of peroxides significantly for all external bleaching materials. Peroxides penetrated the dentine during application of bleaching materials; the penetration of peroxides can be reduced by application of a desensitizing agent

    Evaluation of Anti-Biofilm Activity of Mouthrinses Containing Tannic Acid or Chitosan on Dentin In Situ

    Get PDF
    In contrast to enamel, dentin surfaces have been rarely used as substrates for studies evaluating the effects of experimental rinsing solutions on oral biofilm formation. The aim of the present in situ study was to investigate the effects of tannic acid and chitosan on 48-h biofilm formation on dentin surfaces. Biofilm was formed intraorally on dentin specimens, while six subjects rinsed with experimental solutions containing tannic acid, chitosan and water as negative or chlorhexidine as positive control. After 48 h of biofilm formation, specimens were evaluated for biofilm coverage and for viability of bacteria by fluorescence and scanning electron microscopy. In addition, saliva samples were collected after rinsing and analyzed by fluorescence (five subjects) and transmission electron microscopy (two subjects) in order to investigate the antibacterial effect on bacteria in a planktonic state and to visualize effects of the rinsing agents on salivary proteins. After rinsing with water, dentin specimens were covered by a multiple-layered biofilm with predominantly vital bacteria. In contrast, chlorhexidine led to dentin surfaces covered only by few and avital bacteria. By rinsing with tannic acid both strong anti-adherent and antibacterial effects were observed, but the effects declined in a time-dependent manner. Transmission electron micrographs of salivary samples indicated that aggregation of proteins and bacteria might explain the antiadhesion effects of tannic acid. Chitosan showed antibacterial effects on bacteria in saliva, while biofilm viability was only slightly reduced and no effects on bacterial adherence on dentin were observed, despite proteins being aggregated in saliva after rinsing with chitosan. Tannic acid is a promising anti-biofilm agent even on dentin surfaces, while rinsing with chitosan could not sufficiently prevent biofilm formation on dentin

    Inferential models: A framework for prior-free posterior probabilistic inference

    Full text link
    Posterior probabilistic statistical inference without priors is an important but so far elusive goal. Fisher's fiducial inference, Dempster-Shafer theory of belief functions, and Bayesian inference with default priors are attempts to achieve this goal but, to date, none has given a completely satisfactory picture. This paper presents a new framework for probabilistic inference, based on inferential models (IMs), which not only provides data-dependent probabilistic measures of uncertainty about the unknown parameter, but does so with an automatic long-run frequency calibration property. The key to this new approach is the identification of an unobservable auxiliary variable associated with observable data and unknown parameter, and the prediction of this auxiliary variable with a random set before conditioning on data. Here we present a three-step IM construction, and prove a frequency-calibration property of the IM's belief function under mild conditions. A corresponding optimality theory is developed, which helps to resolve the non-uniqueness issue. Several examples are presented to illustrate this new approach.Comment: 29 pages with 3 figures. Main text is the same as the published version. Appendix B is an addition, not in the published version, that contains some corrections and extensions of two of the main theorem

    Phase-stabilized UV light at 267 nm through twofold second harmonic generation

    Get PDF
    Providing phase stable laser light is important to extend the interrogation time of optical clocks towards many seconds and thus achieve small statistical uncertainties. We report a laser system providing more than 50 ”W phase-stabilized UV light at 267.4 nm for an aluminium ion optical clock. The light is generated by frequency-quadrupling a fibre laser at 1069.6 nm in two cascaded non-linear crystals, both in single-pass configuration. In the first stage, a 10 mm long PPLN waveguide crystal converts 1 W fundamental light to more than 0.2 W at 534.8 nm. In the following 50 mm long DKDP crystal, more than 50 ”W of light at 267.4 nm are generated. An upper limit for the passive short-term phase stability has been measured by a beat-node measurement with an existing phase-stabilized quadrupling system employing the same source laser. The resulting fractional frequency instability of less than 5×10−17 after 1 s supports lifetime-limited probing of the 27Al+ clock transition, given a sufficiently stable laser source. A further improved stability of the fourth harmonic light is expected through interferometric path length stabilisation of the pump light by back-reflecting it through the entire setup and correcting for frequency deviations. The in-loop error signal indicates an electronically limited instability of 1 × 10−18 at 1 s
    • 

    corecore