48 research outputs found

    Identification and Characterization of Ixodes scapularis Antigens That Elicit Tick Immunity Using Yeast Surface Display

    Get PDF
    Repeated exposure of rabbits and other animals to ticks results in acquired resistance or immunity to subsequent tick bites and is partially elicited by antibodies directed against tick antigens. In this study we demonstrate the utility of a yeast surface display approach to identify tick salivary antigens that react with tick-immune serum. We constructed an Ixodes scapularis nymphal salivary gland yeast surface display library and screened the library with nymph-immune rabbit sera and identified five salivary antigens. Four of these proteins, designated P8, P19, P23 and P32, had a predicted signal sequence. We generated recombinant (r) P8, P19 and P23 in a Drosophila expression system for functional and immunization studies. rP8 showed anti-complement activity and rP23 demonstrated anti-coagulant activity. Ixodes scapularis feeding was significantly impaired when nymphs were fed on rabbits immunized with a cocktail of rP8, rP19 and rP23, a hall mark of tick-immunity. These studies also suggest that these antigens may serve as potential vaccine candidates to thwart tick feeding

    Immunity against Ixodes scapularis Salivary Proteins Expressed within 24 Hours of Attachment Thwarts Tick Feeding and Impairs Borrelia Transmission

    Get PDF
    In North America, the black-legged tick, Ixodes scapularis, an obligate haematophagus arthropod, is a vector of several human pathogens including Borrelia burgdorferi, the Lyme disease agent. In this report, we show that the tick salivary gland transcriptome and proteome is dynamic and changes during the process of engorgement. We demonstrate, using a guinea pig model of I. scapularis feeding and B. burgdorferi transmission, that immunity directed against salivary proteins expressed in the first 24 h of tick attachment — and not later — is sufficient to evoke all the hallmarks of acquired tick-immunity, to thwart tick feeding and also to impair Borrelia transmission. Defining this subset of proteins will promote a mechanistic understanding of novel I. scapularis proteins critical for the initiation of tick feeding and for Borrelia transmission

    Novel immunomodulators from hard ticks selectively reprogramme human dendritic cell responses

    Get PDF
    Hard ticks subvert the immune responses of their vertebrate hosts in order to feed for much longer periods than other blood-feeding ectoparasites; this may be one reason why they transmit perhaps the greatest diversity of pathogens of any arthropod vector. Tick-induced immunomodulation is mediated by salivary components, some of which neutralise elements of innate immunity or inhibit the development of adaptive immunity. As dendritic cells (DC) trigger and help to regulate adaptive immunity, they are an ideal target for immunomodulation. However, previously described immunoactive components of tick saliva are either highly promiscuous in their cellular and molecular targets or have limited effects on DC. Here we address the question of whether the largest and globally most important group of ticks (the ixodid metastriates) produce salivary molecules that specifically modulate DC activity. We used chromatography to isolate a salivary gland protein (Japanin) from Rhipicephalus appendiculatus ticks. Japanin was cloned, and recombinant protein was produced in a baculoviral expression system. We found that Japanin specifically reprogrammes DC responses to a wide variety of stimuli in vitro, radically altering their expression of co-stimulatory and co-inhibitory transmembrane molecules (measured by flow cytometry) and their secretion of pro-inflammatory, anti-inflammatory and T cell polarising cytokines (assessed by Luminex multiplex assays); it also inhibits the differentiation of DC from monocytes. Sequence alignments and enzymatic deglycosylation revealed Japanin to be a 17.7 kDa, N-glycosylated lipocalin. Using molecular cloning and database searches, we have identified a group of homologous proteins in R. appendiculatus and related species, three of which we have expressed and shown to possess DC-modulatory activity. All data were obtained using DC generated from at least four human blood donors, with rigorous statistical analysis. Our results suggest a previously unknown mechanism for parasite-induced subversion of adaptive immunity, one which may also facilitate pathogen transmission

    Molecular signatures of T-cell inhibition in HIV-1 infection

    Get PDF

    CD

    No full text

    The negative regulatory function of the lymphocyte-activation gene-3 co-receptor (CD223) on human T cells

    No full text
    Accumulating evidence indicates that the CD4 homologue lymphocyte activation gene-3 (LAG-3) plays a down-regulatory role on T-cell responses. However, the role of LAG-3/major histocompatibility complex (MHC) class II interactions on primary human T-cell responses, as well as the mechanism by which down-regulation occurs, are not clear. Here, we show that LAG-3 colocalized with CD3, CD4 or CD8 in areas of cholesterol-rich raft aggregation during this primary response, as well as in the clustered raft region formed between T cells and antibody-coated beads. Addition of a blocking LAG-3-specific monoclonal antibody to both CD4 and CD8 primary resting T cells activated under conditions of antigen-presenting cell-driven stimulation and low antigen concentrations augments CD69 activation antigen expression, T-cell expansion and T helper 1 (Th1, but not Th2) cytokine production. Blocking LAG-3/MHC class II interactions leads to an increase in the number of cells entering division at these low concentrations of antigen and to more rounds of divisions with an accumulation of cells in the S-phase of the cell cycle. These results indicate that LAG-3 signalling inhibits early events in primary activation of human CD4 and CD8 T cells and further support a role for LAG-3 signalling in regulating the expansion of activated effector or memory T cells, either directly or indirectly through Treg suppressor activity

    Targeting metabolism to reverse T‐cell exhaustion in chronic viral infections

    No full text
    CD8 T-cells are an essential component of the adaptive immune response accountable for the clearance of virus-infected cells via cytotoxic effector functions. Maintaining a specific metabolic profile is necessary for these T-cells to sustain their effector functions and clear pathogens. When CD8 T-cells are activated via T-cell receptor recognition of viral antigen, they transition from a naïve to an effector state and eventually to a memory phenotype, and their metabolic profiles shift as the cells differentiate to accomidate different metabolic demands. However, in the context of particular chronic viral infections (CVIs), CD8 T-cells can become metabolically dysfunctional in a state known as T-cell exhaustion. In this state, CD8 T-cells exhibit reduced effector functions and are unable to properly control pathogens. Clearing these chronic infections becomes progressively difficult as increasing numbers of the effector T-cells become exhausted. Hence, reversal of this dysfunctional metabolic phenotype is vital when considering potential treatments of these infections and offers the opportunity for novel strategies for the development of therapies against CVIs. In this review we explore research implicating alteration of the metabolic state as a means to reverse CD8 T-cell exhaustion in CVIs. These findings indicate that strategies targeting dysfunctional CD8 T-cell metabolism could prove to be a promising option for successfully treating CVIs
    corecore