1,153 research outputs found
The frictions of slow tourism mobilities: conceptualising campervan travel
This paper discusses the materialities of campervan travel as a relatively ‘slow’ form of tourism mobilities. The research is based upon qualitative research with campervan owners and users in the UK. Previous research has emphasised notions of freedom associated with campervan travel and how it has developed its own subculture. However, we seek to move beyond this to examine the frictions of socially and physically embodied practices of campervan travel in order to address the call for more multi-sensory understandings of tourism mobilities. In our discussion of campervan travel, mobility is understood as intensities of circulations, uncertainties and relational affects where different aspects of friction are central. We conclude by discussing the campervan in relation to wider aspects of slow travel
Beyond the Bowen-York extrinsic curvature for spinning black holes
It is well-known that Bowen-York initial data contain spurious radiation.
Although this ``junk'' radiation has been seen to be small for non-spinning
black-hole binaries in circular orbit, its magnitude increases when the black
holes are given spin. It is possible to reduce the spurious radiation by
applying the puncture approach to multiple Kerr black holes, as we demonstrate
for examples of head-on collisions of equal-mass black-hole binaries.Comment: 10 pages, 2 figures, submitted to special "New Frontiers in Numerical
Relativity" issue of Classical and Quantum Gravit
Dramatic slowing of compositional relaxations in the approach to the glass transition for a bimodal colloidal suspension
Molecular dynamics simulation was used to study a model colloidal suspension with two species of slightly different sized colloidal particles in an explicit solvent. In this work we calculated the four interdiffusion coefficients for the ternary system, which were then used to calculate the decay coefficients D± of the two independent diffusive modes. We found that the slower D- decay mode, which is associated with the system's ability to undergo compositional changes, was responsible for the long-time decay in the intermediate scattering function. We also found that a decrease in D- to negligible values at a packing fraction of Φg=0.592 resulted in an extreme slow-down in the long-time decay of the intermediate scattering function often associated with the glass transition. Above Φg, the system formed a long-lived metastable state that did not relax to its equilibrium crystal state within the simulation time window. We concluded that the inhibition of crystallization was caused by the inability of the quenched fluid to undergo the compositional changes needed for the formation of the equilibrium crystal
Rotational tuning of interaction in metamaterials
We experimentally observe the tuning of metamaterials through the relative
rotation of the elements about their common axis. In contrast to previous
results we observe a crossing of resonances, where the symmetric and
anti-symmetric modes become degenerate. We associate this effect with an
interplay between the magnetic and electric near-field interactions and verify
this by calculations based on the interaction energy between resonators
Modeling the gravitational wave signature of neutron star black hole coalescences: PhenomNSBH
Accurate gravitational-wave (GW) signal models exist for black-hole binary (BBH) and neutron-star binary (BNS) systems, which are consistent with all of the published GW observations to date. Detections of a third class of compact-binary systems, neutron-star-black-hole (NSBH) binaries, have not yet been confirmed, but are eagerly awaited in the near future. For NSBH systems, GW models do not exist across the viable parameter space of signals. In this work we present the frequency-domain phenomenological model, PhenomNSBH, for GWs produced by NSBH systems with mass ratios from equal-mass up to 15, spin on the black hole up to a dimensionless spin of , and tidal deformabilities ranging from 0 (the BBH limit) to 5000. We extend previous work on a phenomenological amplitude model for NSBH systems to produce an amplitude model that is parameterized by a single tidal deformability parameter. This amplitude model is combined with an analytic phase model describing tidal corrections. The resulting approximant is accurate enough to be used to measure the properties of NSBH systems for signal-to-noise ratios (SNRs) up to 50, and is compared to publicly-available NSBH numerical-relativity simulations and hybrid waveforms constructed from numerical-relativity simulations and tidal inspiral approximants. For most signals observed by second-generation ground-based detectors within this SNR limit, it will be difficult to use the GW signal alone to distinguish single NSBH systems from either BNSs or BBHs, and therefore to unambiguously identify an NSBH system
Dynamics of a model colloidal suspension from dilute to freezing
Molecular dynamics simulation was used to study a model colloidal suspension at a range of packing fractions from the dilute limit up to the freezing point. This study builds on previous work by the authors which modeled the colloidal particles with a hard core surrounded by a Weeks-Chandler-Anderson potential with modified interaction parameters, and included an explicit solvent. In this work, we study dynamical properties of the model by first calculating the velocity autocorrelation function, the self-diffusion coefficient, and the mutual diffusion coefficient. We also perform detailed calculations of the colloidal particle intermediate scattering function to study the change in dynamics leading up to the freezing point, and to determine whether the current model can be used to interpret light scattering experiments. We then perform a multiexponential analysis on the intermediate scattering function results and find that the data are fitted well by the sum of two exponentials, which is in line with previous analysis of experimental colloidal suspensions. The amplitudes and decay coefficients of the two modes are determined over a large range of wave vectors at packing fractions leading up to the freezing point. We found that the maximum wave vector at which macroscopic diffusive behavior was observed decreased as the packing fraction increased, and a simple extrapolation shows the maximum wave vector going to zero at the melting point. Lastly, the ratio of the two decay coefficients is compared to the scaling law proposed by Segre and Pusey. It was found that the ratio was not constant, but instead was wave vector dependent
The Yamabe invariant for axially symmetric two Kerr black holes initial data
An explicit 3-dimensional Riemannian metric is constructed which can be
interpreted as the (conformal) sum of two Kerr black holes with aligned angular
momentum. When the separation distance between them is large we prove that this
metric has positive Ricci scalar and hence positive Yamabe invariant. This
metric can be used to construct axially symmetric initial data for two Kerr
black holes with large angular momentum.Comment: 14 pages, 2 figure
- …