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Dramatic slowing of compositional relaxations in the approach to the glass transition

for a bimodal colloidal suspension

S. D. W. Hannam, P. J. Daivis,⇤ and G. Bryant
School of Science and Centre for Molecular and Nanoscale Physics,

RMIT University, GPO Box 2476, Melbourne Vic. 3001, Australia.
(Dated: January 12, 2018)

Molecular dynamics simulation was used to study a model colloidal suspension with two species
of slightly di↵erent sized colloidal particles in an explicit solvent. In this work we calculated the
four interdi↵usion coe�cients for the ternary system, which were then used to calculate the decay
coe�cients D± of the two independent di↵usive modes. We found that the slower D� decay mode,
which is associated with the system’s ability to undergo compositional changes, was responsible for
the long-time decay in the intermediate scattering function. We also found that a decrease in D�
to negligible values at a packing fraction of �g = 0.592 resulted in an extreme slow-down in the
long-time decay of the intermediate scattering function often associated with the glass transition.
Above �g, the system formed a long-lived metastable state that did not relax to its equilibrium
crystal state within the simulation time window. We concluded that the inhibition of crystallization
was caused by the inability of the quenched fluid to undergo the compositional changes needed for
the formation of the equilibrium crystal.

I. INTRODUCTION

The nature of the glass transition remains a matter of
enduring interest [1]. Glasses share similarities with crys-
talline solids since they are both mechanically rigid, but
also with liquids because they both have similar disor-
dered structures at the molecular level [2]. A glass can be
obtained by cooling a liquid to below its glass transition
temperature, or, for a colloidal suspension by condens-
ing above the glass transition packing fraction. For the
system to form a glass, the quench must be fast enough
that the first-order phase transition toward a crystalline
structure is avoided. Because the glass transition de-
pends on the quench rate, it di↵ers from thermodynamic
phase transitions such as the solid-liquid transition.

Colloidal systems are ideal for studying vitrification
(glass formation) as their size and di↵usive dynamics en-
sure that their relaxation times are experimentally acces-
sible. They are also one of the simplest experimental sys-
tems known to have a glass transition [3]. In many cases,
colloidal particles can be considered to be simple hard-
spheres. This was first experimentally demonstrated in
the mid-1980s by Pusey and van Megen, who essentially
replicated the theoretical hard-sphere phase diagram us-
ing colloidal samples [3]. A single component hard-sphere
(HS) system (where all spheres are the same size) exists
as a liquid up to a packing fraction of �  0.494, and
coexists as liquid and solid between 0.494 < �  0.545,
above which it is a solid [4, 5]. Interestingly, a small
amount of polydispersity (particles with slightly di↵er-
ent sizes) e�ciently inhibits crystallization [6–10]. This
is the case for experimental suspensions, which can be
compressed above the freezing transition without crys-
tal growth. At a packing fraction �

g

⇡ 0.57-0.59 the

⇤
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relaxation times become su�ciently large compared to
experimental time scales that the system does not relax,
and it forms a glass [3, 11].

In previous work, we studied a unimodal model col-
loidal suspension with an explicit solvent [12, 13]. In
this system the colloidal particles were modeled using
a Weeks-Chandler-Anderson (WCA) potential that was
modified to include a hard-core, while the solvent was
modeled using a simple WCA potential. The explicit sol-
vent was included in the model in an attempt to match
the dynamics of a real colloidal suspension by having the
larger particles di↵use through a solvent with a viscos-
ity and inertia, rather than moving ballistically through
a vacuum. However our attempt to include hydrody-
namic interactions was only partially successful as the
trend in the self di↵usion coe�cients with packing frac-
tion is qualitatively similar to that observed in Brownian
dynamics simulations [13]. We calculated the intermedi-
ate scattering function (which is a key quantity measured
in dynamic light scattering experiments [7, 8, 11, 14–16])
over a large range of packing fractions and wavevectors
in order to systematically study the change in dynamics
on the approach to the freezing point.

We found that at finite wavevectors the intermediate
scattering function could be modelled as a double expo-
nential decay with e↵ective short- and long-time di↵usion
coe�cients [13]. This is in line with experimental analy-
sis [17], though our definition of the short-time di↵usion
coe�cient di↵ers from the usual convention. Usually it
is defined as the zero time limit of the time dependent
di↵usion coe�cient, however this can be ambiguous and
di�cult to determine, so instead we isolated the two ex-
ponential decay modes to determine their individual am-
plitudes and decay coe�cients, and related the short-
time di↵usion coe�cient to the decay rate of the faster
decaying mode. The conclusions drawn in [13] are un-
changed if the zero time limit definition is used. How-
ever, the model studied did not include polydispersity,
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which is key to inhibiting crystallization and allowing a
glass transition to occur. Therefore, one of the aims of
this work is to add polydispersity into the existing model
and study the change in dynamics leading up to the glass
transition, rather than the freezing point.

The simplest way to include polydispersity is by intro-
ducing a second colloidal species with a slightly di↵er-
ent size. Binary HS systems show extremely rich phase
behavior which depends on the size ratio ↵ and compo-
sition of the two species [18]. Kranendonk and Frenkel
[19] studied the freezing and melting points of binary HS
systems in the range 0.85  ↵  1.00. They found that
for an equimolar composition the freezing and melting
points were slightly shifted from the single component
HS system. Binary HS mixtures have also been found to
form a glass [20–23], which makes them an ideal system
to study vitrification through calculation of the interme-
diate scattering function.

The expected form for the intermediate scattering
function in the macroscopic di↵usive limit (infinite wave-
length) for a ternary colloidal suspension has been de-
rived by Pusey et al. [24]. They predicted the existence
of two di↵usive modes with decay rates related to the
four bulk interdi↵usion coe�cients. These two modes
have been observed in colloidal suspensions with poly-
dispersity [25, 26] and in ternary polymer solutions [27],
but their link to the glass transition has never previously
been explored.

It is possible that the slower D� mode, which is as-
sociated with the system’s ability to make compositional
changes [24], may be connected to the inhibition of crys-
tallization at large packing fractions. This follows from
the observation made in both simulations [22, 28] and
experiments [7–9, 16, 29, 30] that compositional fluctua-
tions control crystallization in polydisperse HS systems.
It is this possibility that will be explored in this work
through quantitative calculations of the D± coe�cients
of the two independent modes.

The outline of this paper is as follows: first we give a
summary of the computational model used, and describe
how we calculated the interdi↵usion coe�cients in equi-
librium MD using time correlation functions. Then, we
discuss results for the four bulk interdi↵usion coe�cients,
as well as the decay rates of the two independent modes,
over a range of packing fractions from a moderate pack-
ing fraction up to a super-compressed metastable state.
We then use a multiexponential analysis of the colloidal
particle intermediate scattering function over the same
range of packing fractions, to show that the slow di↵u-
sive mode governs its long-time decay.

Lastly, we show results for the intermediate scattering
function of a system above the glass transition packing
fraction. We demonstrate that the extremely long relax-
ation time of the fluid, which manifests as an extremely
slow decay and ultimate arrest of the intermediate scat-
tering function, is linked to the reduction in the decay co-
e�cient D� of the slow mode to a negligible value. Once
this link is made, it allows us to show that the growth

in relaxation time observed at the glass transition is just
a continuation of the trend established at lower packing
fractions. It also allows a physical interpretation of the
cause of the glass transition, and goes some way to ex-
plaining why polydispersity is essential to the formation
of a glass in multicomponent HS systems.

II. THEORY

A. Intermediate Scattering Function

The intermediate scattering function F

↵�

(k, ⌧) is de-
fined as the normalised auto-correlation function of a
Fourier component of the number density:

F

↵�

(k, ⌧) =
1

N

hn
↵

(k, ⌧)n⇤
�

(k, 0)i
S

↵�

(k)
(1)

where n

↵

(k, t) is given as

n

↵

(k, t) =
N↵X

j=1

exp(�ik · r
j

(t)) (2)

and N is the total number of particles, N
↵

is the number
of particles of species ↵ and r

j

(t) denotes the position of
particle j at time t. The static structure factor S

↵�

(k) is
defined as:

S

↵�

(k) =
1

N

hn
↵

(k, 0)n⇤
�

(k, 0)i. (3)

where * signifies the complex conjugate. In MD simula-
tion, the wavevector k being studied must be consistent
with the periodic boundary conditions of the simulation
box:

k =
2⇡

L

(a1, a2, a3) (4)

where a
i

is an integer and L is the length of the simulation
box (in this work the box is cubic so L

x

= L

y

= L

z

).
From Eq. (4) we see that the lowest non-zero k value

that can be studied in an MD simulation has a magnitude
of |k

min

| = 2⇡/L. As the fluid is isotropic the correla-
tion functions F

↵�

(k, ⌧) and S

↵�

(k) only depend on the
magnitude k = |k|, so an average is done over all k of
equal magnitude.
In this work we have two species of colloidal particles

with a size (diameter) ratio of 0.925. This is done in or-
der to introduce a 3.9% polydispersity into our model. In
order to make comparisons with experimental work, the
intermediate scattering functions that were calculated in-
cluded all colloidal particles. Therefore we calculated the
property:

F

c

(k, ⌧) =
1

N

hn
c

(k, ⌧)n⇤
c

(k, 0)i
S

c

(k)
(5)

where the subscript c indicates that both colloidal species
are included in the calculation. But, in order to simplify
the notation the subscript c will be dropped, and we will
simply denote F (k, ⌧) = F

c

(k, ⌧).
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B. Macroscopic Di↵usive Limit

In the macroscopic di↵usive limit (k ! 0), the decay
rate of the colloidal particle intermediate scattering func-
tion F (k, ⌧) can be related to the di↵usion coe�cients of
the fluid. This is because small fluctuations about equi-
librium in the colloidal particle number densities �n1 and
�n2 of long wavelength can be described by the coupled
linear di↵usion equations [24]:

@

@t

�n1(r, t) = D11r2
�n1(r, t) +D12r2

�n2(r, t)

@

@t

�n2(r, t) = D21r2
�n1(r, t) +D22r2

�n2(r, t)
(6)

where the D

ij

are the four interdi↵usion coe�cients of
the ternary system and convective terms have been ne-
glected. The matrix of di↵usion coe�cients can be di-
agonalized to provide two independent di↵usional modes
which are linear combinations of �n1 and �n2, if we de-
fine:

�n+ = ↵+�n1 + �n2,

�n� = ↵��n1 + �n2,
(7)

which relax according to

@

@t

�n+(r, t) = D+r2
�n+(r, t),

@

@t

�n�(r, t) = D�r2
�n+(r, t).

(8)

Here

↵± =
(D11 �D22)± [(D11 �D22)2 + 4D12D21]1/2

2D12
(9)

and

D± =
1

2
(D11 +D22)±

1

2
[(D11 �D22)

2 + 4D12D21]
1/2

.

(10)
where D± are the e↵ective di↵usion coe�cients of the
two independent di↵usive modes. The fluctuations in
the total number density of colloidal particles �n

c

can
therefore be written as

�n

c

(r, t) = �n1(r, t) + �n2(r, t)

=
1� ↵�
↵+ � ↵�

�n+(r, t) +
1� ↵+

↵+ � ↵�
�n�(r, t)

(11)

Thus the space-time correlation function is

h�n
c

(0, 0)�n
c

(r, t)i =


1� ↵�
↵+ � ↵�

�2
h�n+(0, 0)�n+(r, t)i

+


1� ↵+

↵+ � ↵�

�2
h�n�(0, 0)�n�(r, t)i.

(12)

The colloidal particle intermediate scattering function is
simply the Fourier transform of this correlation function
[24]:

lim
k!0

F (k, t) =


1� ↵�
↵+ � ↵�

�2
h|�n+(k, 0)|2i exp(�k

2
D+t)

+


1� ↵+

↵+ � ↵�

�2
h|�n�(k, 0)|2i exp(�k

2
D�t).

(13)

Therefore, Eq. (13) predicts that in the k ! 0 limit
the decay of the colloidal particle intermediate scatter-
ing function will be the sum of two exponentials with
decay rates proportional to di↵usion coe�cients D± that
are calculated from a combination of the four bulk inter-
di↵usion coe�cients using Eq. (10).
A physical interpretation of the two independent dif-

fusive modes was given by Pusey [24]. The + mode de-
scribes a collective compression-dilation motion of the
particle mixture in which the relative compositions re-
main unchanged (i. e., �n1/n1 = �n2/n2). The
� mode describes composition-fluctuation dynamics in
which species 1 and 2 are exchanged under the preserva-
tion of a constant total number density (i. e., �n1+�n2 =
0).
The + mode (compression-dilation) is expected to re-

lax on a much quicker timescale than the � mode (com-
positional fluctuations). This is because relaxations in
the composition of the fluid occur on a much longer
timescale than relaxations in the total density. Composi-
tional relaxations are also expected to slow drastically as
the packing fraction of the colloidal particles increases.
Therefore we expect a divergence of the two time scales
on the approach to the glass transition.
In this work we focus on studying the decay of F (k, ⌧)

in the k ! 0 limit (or as close to it as is computation-
ally feasible). In this hydrodynamic limit, other theories
such as mode coupling theory (MCT) [31] and multicom-
ponent self-consistent generalized Langevin equation the-
ory (SCGLE) [32] should agree with hydrodynamic the-
ory, and will therefore be consistent with our analysis in
terms of D+ and D�. Outside the hydrodynamic limit,
the additional predictions (such as the non-exponential
stretching in F (k, ⌧)) should appear.

C. Calculation of Interdi↵usion Coe�cients

The four interdi↵usion coe�cients given in Eq. (6) can
be calculated from equilibrium MD simulations using a
combination of Green-Kubo [33, 34] and Kirkwood-Bu↵
theory [35]. The calculation of the di↵usion coe�cients
follows the same method used in our previous work for a
binary system [13], though here we generalize the method
for a ternary system. The di↵usion coe�cients for a 3-
component isothermal fluid appearing in Eq. (6) are de-
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fined by the linear flux-force relations [36]:

J0
1 = �D11rn1 �D12rn2,

J0
2 = �D21rn1 �D22rn2,

(14)

where J0
↵

is the di↵usive molecular flux defined as

J0
↵

= n

↵

(v
↵

� v0). (15)

Here v
↵

is the velocity of species ↵ and v0 is the volume
average streaming velocity given by

v0 =
3X

↵=1

n

↵

⌫

↵

v
↵

(16)

where ⌫

↵

is the partial molecular volume of species ↵.
The di↵usion coe�cients appearing in Eq. (6) are de-

fined in terms of the flux measured relative to the vol-
ume average streaming velocity, but it is more convenient
for computation to calculate the phenomenological coef-
ficients defined by flux laws expressed in terms of the
barycentric (mass average) streaming velocity. The rela-
tionship between the phenomenological coe�cients with
respect to one reference velocity and the di↵usion coef-
ficients measured relative to another can be written as
[36];

D = T

�1B · L ·A · � (17)

where T is the temperature. � is the 2-dimensional ma-
trix with elements

�
ik

=

✓
@µ

i

@n

k

◆

p,T,nj 6=k

. (18)

where µ

i

is the chemical potential of species i and p is
the pressure. The L matrix is also 2-dimensional and
contains the phenomenological coe�cients defined in the
relationship

J
i

=
2X

k=1

L

ik

X
k

. (19)

where X
k

are the thermodynamic forces [36]. The A
matrix comes about when eliminating a flux using the
Gibbs-Duhem equation. It relates the independent forces
to gradients in the chemical potential

X
i

= �
2X

k=1

A

ik

(rµ

k

)
p,T

T

(20)

and for fluxes measured relative to the barycentric refer-
ence velocity takes the form of

A

ik

= �

ik

+
c

i

c3

x

k

x

i

(21)

where x

i

is the number fraction of species i. Matrix B is
required to convert between the di↵usive flux relative to

the barycentric velocity, and the flux relative to the vol-
ume averaged reference velocity. The elements of matrix
B are given by [36];

B

ik

= �

ik

+

✓
n3⌫3

c

k

c3
� n

k

⌫

k

◆
c

i

c

k

. (22)

Therefore to determine the di↵usion coe�cients we need
to determine all thermodynamic factors for �, the partial
volumes ⌫

i

and phenomenological coe�cients for L.
The phenomenological coe�cients are calculated from

Green-Kubo theory [33, 34] which states that

L

↵�

=
V

3k
B

1Z

0

hJ
↵

(⌧) · J
�

(0)id⌧ (23)

where due to time-reversal symmetry, L
↵�

= L

�↵

. The
thermodynamic factors and partial volumes can be cal-
culated from Kirkwood-Bu↵ theory [35]. The well known
expression found by Kirkwood and Bu↵ states that for
a fluid with m species the thermodynamic factors are
calculated from

1

k

B

T

�
↵�

=

C

↵�

mP
i,j=1

n

i

n

j

C

ij �
mP

i,j=1
n

i

n

j

C

i↵

C

j�

|C|
mP

ij=1
n

i

n

j

C

ij

, (24)

and the partial volumes from

⌫

↵

=

mP
j=1

n

j

C

↵j

mP
i,j=1

n

i

n

j

C

ij

. (25)

The matrix C is constructed from the elements

C

↵�

= n

↵

n

�

G

↵�

+ n

↵

�

↵�

(26)

and the quantity C

↵� denotes the cofactor of the element
C

↵�

in the determinant |C|. The volume integrals of the
radial distribution functions G

↵�

are calculated from

G

↵�

=

Z
(g

↵�

(r)� 1) dr = 4⇡

Z
r

2(g
↵�

(r)� 1)dr (27)

where g
↵�

(r) is the radial distribution function of species
↵ and �. These integrals can be di�cult to calculate as
statistical error in g

↵�

(r) at large r is magnified by the
factor of r2, so the numerical integrals may not converge.
As was shown in the previous work [13] a much sim-
pler way to calculate this quantity is through the partial
structure factors:

G

↵�

=
1

x

↵

x

�

n


lim
k!0

S

↵�

(k)� x

↵

�

↵�

�
, (28)

where n is the total number density of all species. By
calculating the low-k values of the partial structure fac-
tors S

↵�

(k), and extrapolating k ! 0, the values of G
↵�

can be calculated in a much simpler way.
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III. SIMULATION METHODS

The pair potential and parameters for our model are
similar to those described in our previous work [13], but
here we expand the model to include a second colloidal

species. We modeled the colloidal particles and solvent
using a Weeks-Chandler-Andersen (WCA) potential (a
shifted and truncated Lennard-Jones potential) which is
modified to include a hard-core. The potential takes the
form:

�(r
ij

) =

8
>>><

>>>:

1 if r
ij

 c

↵�

4✏

✓
�

r

ij

� c

↵�

◆12

�
✓

�

r

ij

� c

↵�

◆6�
+ ✏ if c

↵�

< r

ij

< c

↵�

+ 21/6

0 otherwise

(29)

where r

ij

is the centre-to-centre distance between the
particles i and j, ✏ is the depth of the potential well
and � is the nominal length scale of the potential (in this
work all quantities are expressed in reduced units where
✏ = � = 1). The c

↵�

parameter introduces a hard-core
to the potential where ↵ and � are the two interacting
species. This creates an excluded region that increases
the size of the colloidal particles relative to the solvent,
and also gives di↵erent sizes to the colloid species. A di-
agram of the potential is shown in Fig. 1. The hard-core
parameters we used in this work are given in Table I.

0 1 2 3 4 5 6 7 8

r
ij

0

0.5

1

1.5

2

Φ
W

C
A

c
ab

Potential

FIG. 1. Diagram of the pair potential between colloidal par-
ticles with ✏ = � = 1.00 and c↵� = 3.034.

In this model, the hard-core parameters c

↵�

in all
colloid-solvent interactions are set to zero in order to
remove the large excluded volume around the colloidal
particles that led to strong depletion e↵ects [12, 13].
This means that the hydrodynamic interactions are still
present, and momentum transfer can occur through the
solvent, but these interactions may be weak compared to
those found in experimental systems.

The colloid packing fraction � was calculated from

� =
⇡

6V
(N1d

3
1 +N2d

3
2) (30)

where d

i

is the diameter of the colloidal particles. In the
usual hard-sphere simulations the diameter of the particle
is clear, but in this work we are using a hard-core plus a
WCA repulsive potential. The WCA repulsive potential

adds an extra contribution to the diameter so that the
e↵ective hard sphere diameter is not uniquely defined.

TABLE I. Hard-core parameter c↵� for each species interac-
tion type.

Pair Type cab

C1 - C1 3.034

C1 - C2 2.882

C2 - C2 2.733

C1 - S 0.000

C2 - S 0.000

S - S 0.000

Hess et al. [37] have determined expressions for the ef-
fective hard-sphere diameter of WCA particles as a func-
tion of temperature. These authors defined the e↵ec-
tive diameter d to be the interparticle separation where
the interaction potential is equal to Boltzmann’s constant
times the temperature �(d) = k

B

T . At the reduced tem-
perature of 1.0 used in this work, this gives an extra
diameter of 1.0 to the particles due to the WCA repul-
sion. This gives the colloidal species an e↵ective diameter
of 4.03 and 3.73 times the diameter of the solvent parti-
cles. Using the size ratio of the two colloidal species as
� = 3.73/4.03 = 0.925 the polydispersity s is given by
[22]:

s =

✓
1� 2�

1 + �

◆
⇥100% (31)

which for the present system gives s = 3.9%.
All simulations were done with a total of 108,000 par-

ticles. The calculated packing fraction �, number of par-
ticles and the volumes for the systems studied are shown
in Table II.
The masses of the colloidal particles were set with the

goal of making them approximately neutrally buoyant in
the solvent. The mass needed to do this was calculated
in the same way as done by McPhie [38], which for a size
ratio d1/d2 of 4.03 and 3.73 gave a mass ratio m1/m2 of
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TABLE II. Number of solvent particles Ns, colloidal parti-
cles Nc, average volume hV i and packing fraction � for the
systems studied.

System
No.

Ns Nc hV i �

1 106,910 690 128,670 0.261

2 106,510 1,090 128,778 0.356

3 106,116 1,490 129,131 0.449

4 105,928 1,884 129,404 0.493

5 105,728 2,072 129,905 0.539

6 105,628 2,372 129,812 0.563

7 105,528 2,472 130,764 0.582

8 105,480 2,520 131,162 0.592

9 105,428 2,572 131,791 0.601

10 105,328 2,672 133,434 0.617

11 105,728 2,976 141,788 0.635

50 and 39.62 respectively. Therefore, we used a mass of
1.0 for the solvent particles and a mass of 50.0 and 39.62
for the two colloidal species. This size and mass ratio
is significantly smaller than in an experimental colloidal
suspension, but it has been shown to be large enough for
the larger particles to behave as Brownian particles in a
solvent [39].

All simulations were run using the MD package
LAMMPS [40] and results were post-processed using in-
house code. Simulations at each packing fraction were
done under NPT conditions at a reduced temperature
of 1.00 and reduced pressure of 7.85. The time inte-
gration scheme used follows the time-reversible measure-
preserving Verlet integrator derived by Tuckerman et al.
[41] with a time step of 0.005. The temperature is held
fixed using a Nosé-Hoover thermostat while the pressure
is held fixed using a Nosé-Hoover type barostat, both
with a damping parameter of 10. The simulations were
done at constant temperature and pressure in order to
better replicate the experimental conditions of a real col-
loidal suspension.

IV. RESULTS

A. Interdi↵usion Coe�cients

In order to calculate accurate values for the interdi↵u-
sion coe�cients, accurate values of the phenomenologi-
cal coe�cients L

↵�

and thermodynamics factors �
↵�

are
needed. The phenomenological coe�cients L

↵�

were cal-
culated from the integral of the colloidal particle mass-
flux correlation functions defined in Eq. (23). The mass-
flux correlation functions were calculated out to a maxi-
mum delay time of 25,000 time steps. Numerical integra-
tion with the trapezoid rule was performed on the corre-

lation functions and the integrals were found to converge.
The resulting values of the phenomenological coe�cients
are shown in Fig. 2.
For � < 0.36, all three coe�cients are observed to

change very little with �. But as the freezing point �
f

is
approached, L11 (circles) and L22 (diamonds) were both
found to decrease while L12 (squares) increased. This
trend continues into the metastable region �

f

< � <

�
m

with no obvious change in behavior as the freezing
point is crossed. This is quite di↵erent behavior to that
observed in previous work for the unimodal system [13].
For the unimodal system, the single phenomenological
coe�cient L11 was found to increase, and then plateau,
at the freezing point.
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11
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FIG. 2. Plot of the phenomenological coe�cients L11 (circles),
L22 (diamonds) and L12 (squares) calculated from Eq. (23).
Error bars have not been shown as they are smaller than the
symbols.

To determine the thermodynamic factors �
↵�

, values
for G

↵�

are needed. The integrals of the radial distribu-
tion functions G

↵�

were calculated from the zero-k values
of the partial static structure factors S

↵�

using Eq. (28).
As an example of how the S

↵�

(k ! 0) were calculated,
we have shown data for all S

↵�

(k) at � = 0.36 in Fig. 3.
These are plotted against k2, as S

↵�

(k) is even in k. Al-
though it is possible that S(k) could be a nonanalytic
function of k, and could therefore also depend on odd or
fractional powers of |k|, we saw no evidence of this in our
data. Therefore to determine S

↵�

(k ! 0), a 5th order
polynomial in k

2 was fitted to the data and extrapolated
back to k = 0. This was done for all packing fractions
studied.
All values calculated for S

↵�

(k ! 0) were used in
Eq. (28) to calculate G

↵�

. The values for G
↵�

were used
in Eq. (25) to calculate the thermodynamic factors �

↵�

.
Using the values of the thermodynamic factors �

↵�

, along
with the values of the phenomenological coe�cients L

↵�

shown in Fig. 2, the four interdi↵usion coe�cients were
calculated using Eq. (17). These are shown in Fig. 4.
The main-term di↵usion coe�cients D11 and D22 re-

late the flux of its component to its own concentration
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FIG. 3. Plot of the low-k values of the static structure fac-
tors of a system at a packing fraction of 0.36. A 5th order
polynomial line of best fit was used to obtain the S↵�(k ! 0)
values.

gradient, while D12 and D21 are the cross-term di↵u-
sion coe�cients relating the flux of each component to
the gradient of the other. At each given packing frac-
tion the four interdi↵usion coe�cients are of the same
order of magnitude, because of the comparable size of
the two colloidal species. All four coe�cients increase as
� increases, similar to the behavior of the single inter-
di↵usion coe�cient of the unimodal colloidal suspension
in our previous work [13], which showed an almost ex-
ponential increase on the approach to the freezing point.

Although there are four interdi↵usion coe�cients in a
ternary system, there are only two independent di↵usion
modes. The e↵ective di↵usion coe�cients of these modes
are designated by D± and were calculated using Eq. (10).
These are shown in Fig. 5.

As discussed earlier, the + mode corresponds to
compression-dilation at fixed composition, while the �
mode corresponds to compositional changes at fixed to-
tal concentration. As expected, D+ is found to have a
much larger magnitude than D� (roughly 100⇥ larger)
indicating that the total colloidal particle concentration
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FIG. 4. Plot of the four interdi↵usion coe�cients D11 (cir-
cles), D12 (squares), D21 (diamonds) and D22 (triangles)
against packing fraction �.
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FIG. 5. Plot of the two independent di↵usion coe�cients
D± for the (a) + mode and (b) � mode. Circles show the
values calculated from Eq. (10) and crosses show the values
calculated from fit to F (k, ⌧).

relaxes on a much quicker timescale than the timescale on
which compositional changes occur. D+ also increases as
� increases, showing that compression fluctuations relax
faster with increased �. This is also seen in the single
interdi↵usion coe�cient in the unimodal system [13] as
that mode also corresponds to relaxations in the total
density of the colloidal particles.
However, D� is observed to decrease as � increases,

indicating that composition is relaxing at a slower rate.
This is consistent with the observations of Williams and
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coauthors [22, 28] who observed that compositional relax-
ation slows down dramatically with increased �, which
in turn inhibited crystallization. In this work we relate
the relaxation directly to D�, and so are able to calcu-
late the relaxation rate quantitatively. To determine the
complete behavior of this coe�cient at larger �, the val-
ues for D� were determined independently from fits to
F (k, ⌧). These are also shown in Fig. 5 (crosses) for the
stable and metastable fluids, as well as for a glassy state.
Independent values for D+ could not be calculated from
the fits to F (k, ⌧) due to strong wavevector dependence
at low k.

The last ISF data point in Fig. 5 corresponds to a
packing fraction well above the melting point �

m

, where
the equilibrium state of the system is a crystal [42]. But,
on the total simulation timescale, it was not observed
to relax to its equilibrium crystal state. At this value
of �, we estimate the magnitude of D� to be < 10�9,
indicating that compositional changes can occur but will
do so on an extremely long timescale. This appears to
be obstructing the formation and growth of the colloidal
crystal.

How D� is determined from F (k, ⌧) will be shown in
the next section. We will also show that the � mode cor-
responds to the long-time decay of F (k, ⌧) and therefore
the decrease of D� to an insignificant value at � = 0.592
corresponds to an extremely slow decay in F (k, ⌧) that
is often associated with structural arrest.

B. Intermediate Scattering Function

In this section, calculations of the colloidal particle
intermediate scattering function F (k, ⌧) will be shown
for the high-density stable fluid phase. The wavevectors
studied were those consistent with the periodic bound-
aries of the simulation box (given in Eq. (4) up to
n1 = n2 = n3 = 15). We will report wavevectors in the
dimensionless form kd where d is the average diameter of
the colloidal particles (d = 3.73). This allows direct com-
parison with corresponding kd values measured in light
scattering experiments.

F (k, ⌧) calculated for this system is shown in Fig. 6
for three high-density fluid states at packing fractions �
approaching the freezing point. A multiexponential anal-
ysis was applied to the F (k, ⌧) data in order to isolate the
individual contributions. We expect there to be at least
two decay modes that correspond to the ± modes pre-
dicted from Eq. (13), but additional modes appear away
from the k ! 0 limit. These additional kinetic modes
were observed in the unimodal system [13], and can also
be attributed to memory e↵ects. This multiexponential
analysis technique is similar to our previous work for the
unimodal system [13], and is ultimately based on the ar-
guments of Barocchi and coauthors [43–45]. The fitting

function takes the form:

F (k, t) ⇡ A+ exp(�k

2
D+t) +A� exp(�k

2
D�t)

+A

K

exp(�k

2
D

K

t)

+A

d

exp(�↵t) cos(��t+ �).

(32)

where all coe�cients are allowed to be wavevector de-
pendent. The first two terms in Eq. (32) are the two
thermodynamic modes predicted from macroscopic non-
equilibrium thermodynamics. The third term is a ki-
netic mode, which only appears outside the macroscopic
di↵usive limit (k > 0). The last term is a damped co-
sine which takes into account the very short-time non-
di↵usive decay of F (k, t). This term is present in our
system as the dynamics of the colloidal particles are not
truly Brownian at short times, but its contribution is al-
most negligible. The total fit function from Eq. (32),
along with the individual contributions are also shown in
Fig. 6.
The F (k, ⌧) data shown in Fig. 6 is at kd = 0.55. This

is one of the lowest wavevectors that we could study that
was still consistent with the periodic boundary condi-
tions of the simulation box. In this low wavevector limit,
F (k, ⌧) is expected to approach a double exponential de-
cay as the wavelengths being probed approach the macro-
scopic di↵usive limit (infinite wavelength). This behavior
is observed for the packing fraction of � = 0.356 (Fig. 6a)
where the dominant contributions come from the + and
� modes, and the other modes have negligible ampli-
tudes.
For the higher packing fractions in the low-k region

(Fig. 6b and 6c), the + and � modes still dominate, but
the kinetic mode is non-zero and has a greater contri-
bution at short delay times. The kinetic mode makes a
larger contribution because, at these packing fractions,
the wavevector being studied is not low enough to be in
the macroscopic di↵usive limit. As � increases, the max-
imum wavevector where macroscopic di↵usive behavior
is seen decreases, just as was observed in the unimodal
system [13]. But, we will show later that A

k

! 0 in the
k ! 0 limit for all �, as expected.
We have identified two of the modes in Fig. 6 as the

+ (blue solid line) and � (green dashed line) thermody-
namic decay modes, which can be justified the following
way; Firstly, these two modes have non-zero amplitudes
in the k ! 0 limit identifying them as thermodynamic
decay modes. Secondly, as we will show, their di↵usion
coe�cients extrapolate in the k ! 0 limit to the D± co-
e�cients calculated independently from Green-Kubo and
Kirkwood-Bu↵ theory.
As seen in Fig. 6, the short-time decay is governed by

the + and kinetic modes, while at long-times the decay
is dominated by the � mode. Therefore, this long-time
decay is due to extremely slow long-range compositional
relaxations of the colloidal particles. As � increases, the
amplitude of the � mode increases, while the di↵usion
coe�cient decreases. This indicates that compositional
relaxations are becoming more prominent, while at the
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FIG. 6. Plot of F (k, ⌧) data (symbols) for the packing frac-
tions at (a) � = 0.356, (b) � = 0.449 and (c) � = 0.493
together with the multiexponential fit described in the text
(red solid line through the data points). Data shows the low
wavevector (kd = 0.55) decay. The various components of the
fitting function given in Eq. (32) are also displayed separately
according to the legend. The damped cosine mode has also
not been shown as its contribution is negligible on this scale.
For graphical clarity, not all available data points have been
displayed.

same time relaxing slower. But, at these packing frac-
tions the magnitude of D�(k) is still non-zero, so F (k, ⌧)
is still able to decay to zero within an accessible timescale.
As was shown in Fig. 5, the decrease in D� to negligible
values at larger � results in a metastable fluid that can
not relax on any accessible timescale.

To display in more detail the complete behavior of the
mode amplitudes, and their dependence on packing frac-
tion and wavevector, Fig. 7 shows the amplitudes of the
three di↵usive decay modes at three packing fractions.
As previously observed for the unimodal system [13], at
low wavevectors the amplitude of the kinetic mode A

k

ap-
proaches zero. This indicates that the decay of F (k, ⌧) is
approaching a double exponential decay (as expected in
the macroscopic di↵usive limit). We should also note that
in the limit in which the asymmetry of the two colloidal

species vanishes, A� would also vanish [24]. Therefore,
the extremely slow decay in F (k, ⌧) is not observed, and
we also do not observe a glass transition [13].
The relationship between A+ and A

k

is similar to that
seen between corresponding modes A

L

and A

s

in the uni-
modal system [13], but the amplitude of the new A�
mode shows interesting wavevector dependence. It has a
maximum in the k ! 0 limit, and then decreases towards
zero at some finite wavevector. The gradual decrease in
the contribution from this mode at larger wavevectors
can be explained by the fact that, in the stable liquid
phase, large wavevector (or short wavelength) density
fluctuations do not require compositional rearrangements
in order to decay. But, as we will discuss in the next sec-
tion, this is not true for systems above the glass transition
packing fraction.
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FIG. 7. Plot of the amplitudes of the (a) +, (b) kinetic, and
(c) � exponential decay modes for packing fractions of 0.356
(circles), 0.449 (squares) and 0.493 (diamonds).

Since the k ! 0 behavior of F (k, ⌧) should be given by
the solution to the hydrodynamic description of Eq. (13),
the decay should be the superposition of two exponentials
with di↵usion coe�cients equal to the two independent
macroscopic di↵usion coe�cients defined in Eq. (10). To
check this, in Fig. 8 we have plotted the low-k values
of D�(k) and D+(k) calculated from the fits (symbols)
along with D� and D+ calculated from equilibrium MD
using the Green-Kubo and Kirkwood-Bu↵ theory (ar-
rows).
The wavevector dependence of D+(k) is similar to

that observed for the long-time di↵usion coe�cient in
the unimodal system [13]. In that work, we found that
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FIG. 8. Plot of low-k values of the e↵ective di↵usion coe�-
cients for the (a) D+ and (b) D� modes. Arrows on y-axis
indicate the value of the di↵usion coe�cients calculated for
the corresponding packing fractions. Data for D+ has been
shifted up by multiples of 0.5 for clarity.

the wavevector dependence could be fitted well with a
Lorentzian type function of the form:

D+(k) =
D+

1 + ↵|k|� (33)

where the coe�cients ↵ and � are free fitting parameters
that are not wavevector dependent. Fig. 8 shows that this
functional form also fits the data for D+ quite well over
the range of wavevectors investigated at each packing
fraction. Though we have not shown the values here,
the ↵ parameter were found to increase exponentially
with packing fraction, while the � remained relatively
constant with an approximate value of 2. This is identical
to the observed behaviour of the corresponding mode in
the unimodal system [13].

Interestingly, over the range of wavevectors studied,
D�(k) does not have any observable wavevector depen-
dence. The values calculated from the fit to F (k, ⌧) are
also in good agreement with the bulk di↵usion coe�-
cient D� (as shown in Fig. 5). Because D�(k) does not
show any clear wavevector dependence, the values used
in Fig. 5 are the average of D�(k) over the range shown
in Fig. 8. We can also conclude from the independence of
D�(k) on wavevector that the timescale on which com-
positional fluctuations decay scales as k2 for a given �.

In the stable liquid phase, the compositional fluctua-
tions decay at a much slower rate than the total density
fluctuations (D+ >> D�). But, at these packing frac-
tions the fluid is still able to relax to equilibrium within
a reasonable experimental timescale after a quench. As
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FIG. 9. Plot of the radial distribution function g(r) for pack-
ing fractions above the melting point. Data for each � has
been shifted up by multiples of 2 for clarity.

we will see in the next section, D� decreases to negligible
values in densely packed fluids (� > 0.58). This means
that the compositional changes, which are necessary for
the formation of the equilibrium crystal [22, 28], can not
occur within a reasonable experimental timescale, result-
ing in an extremely long lived metastable state.

C. Glass Transition

Above the melting point of the solid, the thermo-
dynamic force driving the fluid towards crystallization
increases to the point where crystallization can occur
within an experimental timeframe. However, the devel-
opment of an equilibrium crystal structure is hindered
by the rate at which compositional changes can occur in
regions of the fluid [7, 8]. To study the e↵ects of these
two counteracting forces, extremely low density homo-
geneous fluids were quickly compressed using the baro-
stat to a range of packing fractions above the melting
point. The systems were then allowed to equilibrate to
determine at which � crystallization would occur. To de-
termine whether crystallization has occurred, the radial
distribution function g(r) was calculated over intervals
of 500, 000 time steps until no noticeable changes in the
structure of the system could be observed. The final g(r)
calculated are shown in Fig. 9.
The systems in the range of packing fractions 0.563 

�  0.582 were all found to have completely crystallized.
The g(r) in these systems show a crystalline structure
with the lattice planes clearly seen as sharp peaks. These
peaks extend out to interparticle separations well beyond
the first major peak, showing long-range order character-
istic of a crystal. This phase behavior is consistent with
the results from previous binary HS systems [19].
For all � � 0.592 the thermodynamic driving force to-

wards a crystalline state has increased, but there is no
clear onset of crystallization. In these systems, g(r) does
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FIG. 10. Plot of the MSD for the larger species of colloidal
particles at the packing fractions indicated in the legend. For
clarity not all data points have been shown.

not show clear lattice planes, but instead has a structure
that resembles a dense liquid. These systems have been
allowed to equilibrate well beyond the time it took for the
lower � systems to completely crystallize, indicating that
for all packing fractions greater than �

g

= 0.587± 0.005
there is a mechanism inhibiting crystallization, and caus-
ing a long-lived metastable state to form. This value of
�

g

is close to the glass transition packing fraction ob-
served in experimental systems with similar polydisper-
sity [46] as well as binary HS simulations [22], but it
remains to be seen whether the state points shown in
Fig. 9 have actually formed a glass, or just a long-lived
metastable liquid.

To determine whether glassy behaviour is observed for
� > �

g

, the mean squared displacement (MSD) was cal-
culated for the larger species of colloidal particles at pack-
ing fractions ranging from a moderately dense stable liq-
uid at � = 0.261 up to � = 0.635, and is presented in
the form of a double-logarithmic plot in Fig. 10. Di↵usive
motion can be identified by those regions where the data
follows a straight line, which can be observed to occur at
short-times for all �. This short-time behaviour corre-
sponds to motion of the tagged colloidal particle through
the solvent inside its local cage.

Linear behavior is also observed at long-times for the
systems with � < �

g

, with the intermediate region show-
ing the transition from short-range di↵usion through the
solvent to long-range di↵usion through the solution. The
intermediate region is caused by the interaction of the
tagged colloidal particle with its neighbouring colloidal
particles. This intermediate time grows as � increases
until the particles become trapped by their nearest neigh-
bours, leading to the extreme slow down and approach
to a plateau of the MSD seen at at � � �

g

. This slow
down has been observed in many experimental works on
colloidal suspensions [46, 47] and indicates that although
small-scale movement of the tagged particle inside its lo-
cal cage is possible, large-scale di↵usion is extremely un-
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FIG. 11. Plot of F (k, ⌧) against ⌧ for (a) at low wavevector
(kd = 1.62) and (b) at the structure factor peak, for the
packing fractions shown in the legend. Data for each � has
been shifted along the horizontal axis and for clarity not all
data points have been shown.

likely within the experimental time window studied.

The MSD reflects the single particle dynamics, and so
highlights the confinement of the tagged particle by its
surrounding particles. It is also interesting to look at
the behaviour of the collective dynamics as seen through
F (k, ⌧). The dramatic decrease in the D� coe�cient
seen in Fig. 5 manifests in F (k, ⌧) as an extremely slow
decay at long times. In the stable fluid (�  0.493)
this is only observed at small k, as seen in Fig. 7. This
was also true for the metastable fluid below the melting
point (� = 0.539) but it may not be true for metastable
systems when � > �

g

.

To determine whether this is the case, F (k, ⌧) was cal-
culated for systems with � > �

g

, and is shown in Fig. 11
on a logarithmic scale for decays at a low wavevector
(Fig. 11(a)) and at the structure factor peak (Fig. 11(b)).
Also shown is the F (k, ⌧) for the stable liquid (� = 0.449
and 0.493) and metastable liquid (� = 0.539) below
the melting point. Simulations were prepared by first
compressing the systems to the given packing fraction.
After compression multiple consecutive simulations were
run, with each lasting 106 timesteps (5000 reduced time
units). F (k, ⌧) was calculated for each run and com-
parisons were made to determine when the system had
reached a steady state where changes in the decay curve
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between runs could not be readily observed. After this
point, F (k, ⌧) was accumulated and averaged over ap-
proximately 50 (or more) individual simulation runs each
lasting 106 timesteps. However, we do note that since the
systems with packing fractions above the glass transition
are in a non-equilibrium long-lived metastable state, slow
ageing of these systems may still occur [48].

The low-k data in Fig. 11(a) for the � dependence of
F (k, ⌧) shows a definite trend. The slow long-time mode
that we associate with compositional relaxations, is ob-
served as a secondary step in the decay. It is present at
all �, and is seen to decay slower as � increases, corre-
sponding to the decrease in D� observed in Fig. 5. At
� > 0.592, the F (k, ⌧) is still decaying at long-times,
but its decay rate is almost negligible. We estimate that
at � > 0.592 the value of D� has decreased to < 10�9,
and at this rate of decay the timescale on which composi-
tional relaxations would completely decay is well beyond
the accessible simulation time.

Light scattering experiments are limited in the lowest
wavevector that can be achieved (for an exception see
Martinez et al. [14]). Usually, the main interest is at
the wavevector which corresponds to the structure factor
peak. Therefore, we have displayed the decay at these
wavevectors in Fig. 11(b). At these larger wavevectors
(or conversely small wavelengths), the large scale com-
positional relaxation mode is not observed at low �. We
can explain this by noting that at small length scales,
density fluctuations do not require large scale motion of
the colloidal particles in order to relax.

At � > 0.592 the decay of F (k, ⌧) undergoes a dra-
matic change in behavior at large wavevectors. We see a
slower decay mode emerge, shown by the secondary step
in the decay. This two step relaxation is found in exper-
imental systems [15] and is predicted by mode coupling
theory (MCT) with the faster � decay usually associated
with relaxation of particles inside their local cage and the
slower ↵ decay associated with breaking of particles from
their local cage [31].

Our analysis shows that we can interpret the secondary
relaxation as the emergence of the compositional relax-
ation mode at this wavevector. It shows that in order
for the smaller wavelength density fluctuations to de-
cay at these packing fractions, large-scale compositional
rearrangements are needed. This is completely consis-
tent with the idea of strongly caged colloidal particles
where small-scale motion within a cage may be easy, but
large-scale excursions require the cooperative motion of
a larger number of particles [15]. However, there is a
subtle but important di↵erence in our interpretation. In
our previous work using this model without polydisper-
sity, we did not observe any glassy behavior, so there
must be a fundamental di↵erence between the monodis-
perse and polydisperse cases to explain this behavior.
Some authors studying deeply quenched monodisperse
HS systems have been able to observe glassy behavior at
short times [49], but these systems were able to read-
ily crystallize via short-range “shu✏ing” which allows

amorphous regions to gradually transform into crystal-
lites [50]. These authors note that additional fractiona-
tion must occur if polydisperse systems are to crystallize.
Thus for the polydisperse case shown here, the key to the
long-lived glass is that caging prevents the composition
from relaxing, and never allows the system to reach its
equilibrium state.
The two di↵erent wavevectors displayed in Fig. 11 give

very di↵erent picture of the nature of the � mode. At
low k, the � mode is always present while progressively
its amplitude increases and decay coe�cient decreases.
At the larger k the � mode appears to emerge as the
glass transition is approached. This apparent emergence
may simply be the result of an e↵ect that is usually only
observed at large length scales being driven to smaller
length scales as particles become more caged. In order
for a colloidal particle to break out of its neighbouring
cage, it requires cooperative motion of a larger number
of other colloidal particles.
We note that since D� is small but non-zero, we do

not observe complete structural arrest often considered
as the signature of a glassy state. However, the persistent
downturn of F (k, ⌧) does not forbid us from identifying
�

g

⇡ 0.592 as the glass transition packing fraction as
this downturn is also observed in some experimental [15,
46, 51, 52] and simulation [53, 54] results above the glass
transition. We have identified this as �

g

because, above
this packing fraction, the relaxation time of the system
has grown to the point where the time it would take the
system to relax to its equilibrium crystal is well beyond
the accessible simulation time.
It may be possible to see further arrest by increasing

the polydispersity to levels seen in experimental colloidal
suspensions (� 5%) or by using a continuous distribution
of particle sizes, rather than two discrete sizes. A later
study on the dependence of D� on the total polydisper-
sity and distribution shape may be of interest in order to
find conditions that maximise the glass forming ability
of the system.

V. CONCLUSION

Molecular dynamics simulations were conducted on a
model colloidal suspension with explicit solvent. In this
study, we extended previous work by including polydis-
persity into the model by adding a second smaller species
of colloidal particles. The introduction of polydispersity
had the e↵ect a inhibiting crystallization at large pack-
ing fractions, resulting in glassy behaviour. By calculat-
ing the intermediate scattering function and relating its
decay to multicomponent interdi↵usion coe�cients, we
attempted to establish the cause of this crystallization
inhibition.
We found that the inhibition of crystallization was

caused by the inability of the quenched fluid to undergo
compositional changes needed for the formation of crys-
tals. This link was determined by studying the � dif-
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fusive mode predicted for the ternary system from non-
equilibrium thermodynamic theory. The e↵ective di↵u-
sion coe�cient D� of this mode was calculated indepen-
dently from Green-Kubo and Kirkwood-Bu↵ theory. It
was found to decrease as the packing fraction increased,
showing that compositional relaxations become increas-
ingly slow at large colloidal particle densities.

The long-time decay of the colloidal particle interme-
diate scattering function at low wavevector was domi-
nated by the � decay mode. In the stable liquid phase,
D�(k) was found to be wavevector independent, while
the amplitudes had a maximum in the k ! 0 limit, then
decreased to zero at a finite wavevector. This showed
that in this phase, compositional relaxations only con-
tribute to small wavevector (large wavelength) density
relaxations.

A decrease of D� to negligible values at � ⇡ 0.592
resulted in an extreme slow down in the long-time
decay of the intermediate scattering function. This
was identified as the glass transition packing fraction
because above this density, the system did not relax to
its equilibrium crystal state within the simulation time
window. Unlike in the stable fluid phase, the amplitudes

of the � mode were observed to be non-zero for large
wavevectors above the glass transition packing fraction.
We interpret this emergence of the compositional re-
laxation mode by stating that in order for the smaller
wavelength density fluctuations to decay at these packing
fractions, large-scale compositional rearrangements are
now needed. However, the compositional relaxation time
has grown to the point where the time it would take the
system to relax to its equilibrium crystal is well beyond
the accessible simulation time, thus crystallization is
inhibited.
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