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Dynamics of a model colloidal suspension from dilute to freezing

S. D. W. Hannam, P. J. Daivis,∗ and G. Bryant
School of Science and Centre for Molecular and Nanoscale Physics,
RMIT University, GPO Box 2476, Melbourne Vic 3001, Australia.

(Dated: July 10, 2016)

Molecular dynamics simulation was used to study a model colloidal suspension at a range of
packing fractions from the dilute limit up to the freezing point. This study builds on previous work by
the authors which modelled the colloidal particles with a hard-core surrounded by aWeeks-Chandler-
Anderson potential with modified interaction parameters, and included an explicit solvent. In this
work we study dynamical properties of the model by first calculating the velocity autocorrelation
function, the self diffusion coefficient and the mutual diffusion coefficient. We also perform detailed
calculations of the colloidal particle intermediate scattering function to study the change in dynamics
leading up to the freezing point, and to determine whether the current model can be used to interpret
light scattering experiments. We then perform a multiexponential analysis on the intermediate
scattering function results and find that the data is fitted well by the sum of two exponentials,
which is in line with previous analysis of experimental colloidal suspensions. The amplitudes and
decay coefficients of the two modes are determined over a large range of wavevectors at packing
fractions leading up to the freezing point. We found that the minimum wavevector needed to be
effectively in the macroscopic diffusive limit decreased as the packing fraction increased, and a simple
extrapolation shows the minimum wavevector going to zero at the melting point. Lastly, the ratio of
the two decay coefficients is compared to the scaling law proposed by Segrè and Pusey [Phys. Rev.
Lett. 77, 771 (1996)]. It was found that the ratio was not constant, but instead was wavevector
dependent.

I. INTRODUCTION

Colloidal systems are ideal for studies of solidifica-
tion mechanisms. An understanding of crystallization
processes in colloidal systems aids in the understanding
of phase transitions in other soft matter systems [1, 2],
with application to materials design [3] and to biology
[4]. Crystallization in colloidal suspensions can be stud-
ied via light scattering experiments, often using dynamic
light scattering (DLS) or X-ray photon correlation spec-
troscopy (XPCS) [5].
Typical model systems used in light scattering experi-

ments consist of suspensions of spherical particles which
are stabilized against aggregation by coating the sur-
face with a short-chained polymer (steric stabilization)
or with a charged ionic layer (charge stabilization). The
computational model used in this work does not include
electrostatic interactions. Therefore, it aims to replicate
the dynamics of sterically stabilized suspensions where
the interaction is steeply repulsive and is often modeled
with hard-sphere interactions. The pioneering work using
DLS to study the dynamics of dense colloidal suspensions
was done by Pusey, van Megen and collaborators [6–11].
Computational models are a useful complement to ex-

perimental investigations. But although the computer
power available is ever increasing, a full molecular dy-
namics (MD) treatment of all the interactions present
in the system is still computationally unattainable. Be-
cause of the complexity of experimental systems, most
simulations resort to idealized descriptions, often model-
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ing the systems as single component hard-spheres using
event driven MD [12] which completely ignores the pres-
ence of the solvent. This means the particles in these
models move with ballistic dynamics, rather than diffus-
ing through a solvent. These models neglect effects such
as the viscoelasticity of the solvent and the momentum
transfer that occurs via the solvent [13].
To implicitly take into account the solvent, Brown-

ian dynamics (BD) treats the fluid as a continuum rep-
resented by frictional and random forces. This intro-
duces an effective drag on the hard-spheres, but usually
does not include multi body hydrodynamic interactions
(HIs) from the solvent [14, 15]. Incorporating 2-body
HIs in BD in a simplified way requires the use of hy-
drodynamic tensors such as the Yamakawa-Rotne-Prager
(YRP) tensors [16–18]. However, BD-YRP hydrodynam-
ics is only valid for relatively dilute suspensions and can
be quite computationally expensive. Alternative tech-
niques that have been developed to include HIs include
Lattice-Boltzmann [19, 20], Dissipative Particle Dynam-
ics [21], and Stochastic Rotation Dynamics [22, 23], all
of which involve coarse-graining the solvent.
Few attempts have been made to include solvent ex-

plicitly into the simulation by calculating the equations
of motion for both the colloidal particles and the sol-
vent directly. This is simply because in order to match
the size and mass ratio of experimental colloidal suspen-
sions, the simulation would require in the order of tens
of millions of solvent molecules for every colloidal parti-
cle. This is clearly beyond the reach of current compu-
tational capabilities, so smaller size and mass ratios have
to be used. Vrabecz and Toth [24] studied the effect of
explicitly adding a second smaller HS particle (1/5th and
1/10th the diameter of the larger particle) on the struc-
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tural properties of the fluid. They found that including
the second smaller species caused a change in the radial
distribution function of the larger particles in the fluid.
This was evident through sharpening in the main peak,
showing that the presence of the smaller particles causes
a very strong depletion attraction between the larger par-
ticles.
Previous work done by the authors expanded on the

explicit solvent model by including a second species with
a smaller mass (1/50th the mass of the larger particles)
and smaller size (1/4th the diameter) to represent the
solvent [25]. In this model the colloidal particles were
modeled using a Weeks-Chandler-Anderson (WCA) po-
tential which was modified to include a hard-core, while
the solvent was modeled using a simple WCA potential.
In agreement with previous work, it was found that intro-
duction of the second smaller species caused strong de-
pletion attractions between the larger species [24]. These
strong depletion forces are not present in experimental
HS colloidal suspensions, and are purely due to the rel-
atively small size ratio that had to be employed in the
simulations due to computational limitations. Because
the diameter of the two particles is of the same order,
there is an excluded volume around the colloidal parti-
cles that gives rise to significant depletion effects.
Since the depletion effects were caused by the large

excluded volume, it could be effectively eliminated by re-
ducing the hard-core parameter in the colloidal-solvent
pair interaction [25]. This allowed the solvent to effec-
tively penetrate the colloid, which can be seen as unphys-
ical, but the model was found to replicate the properties
of an experimental colloidal suspension. The static struc-
ture factor, phase behavior and crystal structure were all
found to agree with experimental results. With the ap-
parent success of this model in replicating the behavior
of real colloidal suspensions for these few key features,
it remains to be seen how well it matches the dynam-
ical behavior as represented by other properties (such
as diffusion coefficients and the intermediate scattering
function) and whether the model can be used as a com-
plement to light scattering experiments.
Therefore, one of the aims of this work is to expand on

the previous work by calculating a number of key trans-
port coefficients over a wide range of colloid packing frac-
tions (also referred to as volume fractions) from the dilute
fluid up to the freezing point. Then, we compare the cal-
culations of the model with available experimental results
to determine the level of agreement. The other goal of
this paper is to use this model to obtain accurate calcula-
tions for the intermediate scattering function at packing
fractions approaching the freezing point.
In the liquid state, the empirical fit to the intermediate

scattering function usually takes the form of a single or
double exponential [26, 27]. In extremely dilute systems
at low wavevector, DLS yields a single exponential decay
with a wavevector independent diffusion coefficient. This
is in line with what was found in previous work using this
model [25]. As the packing fraction increases the diffu-

sion coefficient becomes wavevector dependent, but the
decay is still well approximated by a single exponential.
At moderate packing fractions, a second decay mode

is observed and the data is fitted with two exponentials
with different effective diffusion coefficients [9, 27]. These
two empirical modes are often associated with short-time
and long-time diffusion coefficients, where the former is
associated with movement of the colloidal particles in
its local cage while the latter is associated with diffu-
sion over larger length scales [9]. This interpretation of
the two modes has not been verified, and an exact re-
lationship between the decay coefficients and transport
or thermodynamic properties has not been made. Even
so, Segrè and Pusey [28] proposed an empirical scaling
law where the ratio of the two effective diffusion coeffi-
cients is approximately constant for highly concentrated
colloidal suspensions over a broad range of wavevectors
around the structure factor peak.
The validity of this scaling law has been called into

question, with Lurio et al. [29] failing to observe the scal-
ing in XPCS experiments on a charge-stabilised colloidal
suspension. This was thought to be either because the
colloids were charge stabilized (rather than sterically sta-
bilized) or because XPCS gives different results to DLS.
Martinez et al. [5] showed that the results of XPCS and
DLS experiments are consistent, ruling out the latter ex-
planation. They were able to see the scaling behavior
over several decades in time but not in the long time
limit. More recent work by Orsi et al. [27] studied a sys-
tem very similar to that used by Martinez and Segrè, and
found that the scaling law did hold for high concentration
sterically stabilized colloids.
A systematic study of the individual decay modes over

a large range of packing fractions and wavevectors is dif-
ficult to do experimentally. In particular it is difficult to
access low wavevectors using existing techniques. There-
fore, we choose to use MD to calculate the intermediate
scattering function and use a multiexpontial analysis to
decompose its individual contributions in order to com-
plement the experimental investigation.
The outline of this paper is as follows: first we give a

summary of the computational model used, and describe
how we calculated the self and mutual diffusion coeffi-
cients in equilibrium MD using time correlation func-
tions. Then, we systematically study the behavior of the
correlation functions and the self and mutual diffusion
coefficient from an extremely dilute state up to packing
fractions just below the freezing point in order to observe
any major changes that occur in the approach to freez-
ing. Finally, a multiexponential analysis is carried out
on the colloidal particle intermediate scattering function
from small wavevectors to just past the structure fac-
tor peak. This is done for higher packing fractions ap-
proaching the freezing point. We discuss the individual
decay modes that are observed and their wavevector and
packing fraction dependence. We then test the scaling
relationship proposed by Segrè and Pusey [28] to see if
we also find a constant ratio of the short and long time
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diffusion coefficients.

II. THEORY

A. Thermodynamic and transport coefficients

Transport coefficients can be determined by calculat-
ing time correlation functions (TCFs) and using Green-
Kubo relations [30]. In general, a time correlation func-
tion C(r, τ) often takes the form:

C(r, τ) = ⟨A(r, τ)A(r, 0)⟩ (1)

where A(r, τ) is a microscopic property which may de-
pend on position r and delay time τ . ⟨...⟩ indicates en-
semble averaging. In Fourier space Eq. (1) takes the
form

C(k, τ) = ⟨A(k, τ)A∗(k, 0)⟩ (2)

where A(k, τ) is now the spatial Fourier transform of the
microscopic variable A(r, τ) and * indicates the complex
conjugate. The wave vector k being studied in MD sim-
ulation must be consistent with the periodic boundary
conditions of the simulation box:

k =
2π

L
(n1, n2, n3) (3)

where ni is an integer and L is the length of the simula-
tion box (in this work the box is cubic so Lx = Ly = Lz).
The correlation function C(k, τ) only depends on the
magnitude k = |k| as the average is done over all k of
equal magnitude (as the fluid is isotropic). Also, from Eq.
(3) we see that the lowest k value that can be measured
in an MD simulation is k = 2π/L.
In this work, we study correlation functions of particu-

lar microscopic variables that give useful information on
properties of the colloidal suspension. The self diffusion
coefficient of the colloidal particles Ds can be calculated
from the integral of the velocity autocorrelation function
C(τ) by [31]:

Ds =

∞
∫

0

C(τ)dτ

=
1

3

∞
∫

0

⟨vi(τ) · vi(0)⟩dτ

(4)

where vi is the velocity of colloidal particle i and the
average is done over all colloidal particles. Self diffusion
is related to the diffusion of a particle in the absence of
temperature and/or concentration gradients. But, in the
presence of such gradients other transport coefficients are
defined. The linearized macroscopic diffusion equation
for species 1 (which represents the colloidal particles) in
a binary fluid is [32]:

∂c1
∂t

= Dm∇2c1 +D′∇2T (5)

where ci refers to the mass fraction of species i, Dm

is the mutual diffusion coefficient, D′ is the thermal-
diffusion coefficient and T is the temperature. The coeffi-
cientsDm andD′ can be calculated from non-equilibrium
MD simulation by setting up a system with a concen-
tration/temperature gradient. They can also be calcu-
lated from equilibrium MD by relating them to the phe-
nomenological coefficients Lαβ which can be calculated
from TCFs using Green-Kubo relations. As we will see
later, the mutual diffusion coefficient Dm governs the de-
cay of the intermediate scattering functions in the low
wavevector limit.
A well known expression for the mutual diffusion coef-

ficient Dm is given by [32]:

Dm =
L11

ρc2T

(

∂µ1

∂c1

)

p,T

(6)

where ρ is the total mass density of the fluid and µ1

is the chemical potential per unit mass of the colloidal
particles. L11 is the phenomenological coefficient given
in the Green-Kubo relations as

L11 = lim
τ→∞

τ
∫

0

A11(τ)dτ (7)

and

A11(τ) =
V

3kBT
⟨J1(τ) · J1(0)⟩ (8)

where kB is Boltzmann’s constant and V the volume of
the system. The microscopic expression for the diffusive
mass flux J1 of the colloidal particles takes the form

J1 =
1

V

N1
∑

i=1

m1(vi − v) (9)

where m1 is the mass of a colloidal particle and v is
the average streaming velocity (v = 0 for an equilibrium
fluid).
Apart from the usual transport coefficients we also

calculated the intermediate scattering function Fαβ(k, τ)
which is also measured in light scattering experiments.
This can be done in equilibrium MD simulation by cal-
culating the correlation function of the Fourier transform
of the number density:

nα(k, t) =
1√
N

Nα
∑

i=1

exp(−k · ri(t)) (10)

where N is the total number of particles, Nα is the num-
ber of particles of species α and Fαβ(k, τ) is given as

Fαβ(k, τ) =
⟨nα(k, τ)n∗

β(k, 0)⟩
Sαβ(k)

(11)

where the static structure factor Sαβ(k) is the zero delay
time value Fαβ(k, τ = 0)

Sαβ(k) = ⟨nα(k, 0)n
∗

β(k, 0)⟩. (12)
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From the calculations of the Fαβ(k, τ) we are able to
make comparisons with experimental data.
The decay of F11(k, τ) can be related to the mutual dif-

fusion coefficient Dm in the macroscopic diffusive limit.
From the thermodynamic point of view Dm relates the
diffusive mass flux to the gradient in the concentration.
From the microscopic point of view such gradients arise
in an equilibrium suspension from local fluctuations, and
the decay of these fluctuations is governed by the same
equation as the decay of macroscopic gradients.
Therefore, starting with the balance equation for the

mass fraction of species 1 we can Fourier transform Eq.
(5) into k-space which gives:

∂c1(k, t)

∂t
= −Dmk2c1(k, t) (13)

where we have neglected thermal-diffusion as this effect
is small in comparison to mutual diffusion. After multi-
plying both sides of Eq. (13) by the complex conjugate
of the initial time value c∗1(k, 0) and ensemble averaging,
the solution becomes

F11(k, τ) =
⟨c1(k, τ)c∗1(k, 0)⟩

⟨|c1(k, 0)|2⟩
= exp(−k2Dmτ) (14)

which corresponds to the intermediate scattering func-
tion of the colloidal particles. This macroscopic relation-
ship is only expected to hold in the macroscopic diffusive
limit. Therefore, the mutual diffusion coefficient governs
the decay of the intermediate scattering function in the
k → 0 limit.

B. Calculation of the thermodynamic factor

In order to calculate the mutual diffusion coefficient
Dm (defined in Eq. (6)), accurate values are needed
for both the thermodynamic factor ∂µ1/∂c1 and phe-
nomenological coefficient L11. L11 can be calculated from
Green-Kubo theory, but ∂µ1/∂c1 is more difficult to cal-
culate. One of the best ways to calculate it is using the
theory presented by Kirkwood and Buff (KB) which re-
lates the thermodynamic factor to the integral of the ra-
dial distribution functions Gαβ [33]. A conversion of the
original KB relations to the mass fraction units was done
by Zhou and Miller [34] and is given for a binary fluid as

(

∂µ1

∂c1

)

p,T

=
V 2

ρ⟨|c|2⟩
(15)

where

⟨|c|2⟩ =
m2

1m
2
2x1x2n2N

ρ4
[1 + x1x2n(G11 +G22 − 2G12)].

(16)

Here mα and xα are the mass and number fraction of
species α respectively, and n is the total number density

of the fluid. The volume integrals of the radial distribu-
tion functions Gαβ are calculated from

Gαβ =

∫

(gαβ(r)− 1) dr = 4π

∫

r2(gαβ(r)− 1)dr (17)

where gαβ(r) is the radial distribution function of species
α and β. These integrals can be difficult to calculate as
statistical error in gαβ at large r is magnified by the fac-
tor of r2, so the numerical integrals may not converge.
Therefore, calculation of Gαβ usually requires very accu-
rate data for gαβ(r) and fitting a function to the tail to
evaluate the integral [35, 36].
Instead of calculating this integral, it can be simpler to

calculate the values of Gαβ through the static structure
factors Sαβ(k). It is well known that the partial structure
factors are related to the Fourier transforms of the radial
distribution functions through [31]

Sαβ(k) = xαδαβ + xαxβn

∫

gαβ(r) exp(ik · r)dr. (18)

Assuming that the fluid is isotropic and writing the con-
stant part of the radial distribution explicitly this can be
rewritten as

Sαβ(k) = xaδαβ + 4πxαxβn

∫

r2[gαβ(r)− 1] exp(ik · r)dr

+ (2π)3xαxβnδ(k)
(19)

Comparing this with the expression given for Gαβ in Eq.
(17) we see that, if we ignore the contribution of the delta
function at zero wave vector, we can write

Gαβ = 4π

∫

r2[gαβ(r) − 1]dr

= lim
k→0

4π

∫

r2[gαβ(r)− 1] exp(ik · r)dr
(20)

therefore

Gαβ =
1

xαxβn

[

lim
k→0

Sαβ(k)− xαδαβ

]

. (21)

So by calculating the low-k values of the partial struc-
ture factors Sαβ(k), and extrapolating k → 0, the values
of Gαβ can be calculated in a much simpler way. This
method offers a much easier method of calculation Gαβ

than through the integral given in Eq. (17) directly. An
alternate derivation of a relationship between the ther-
modynamic factors and the Sαβ(k → 0) values was pre-
viously done by Nichols and coworkers [37], though their
definition of the thermodynamic factor differs.

C. Multiexponential analysis

As stated earlier, the intermediate scattering function
is defined as the autocorrelation function of a Fourier
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component of the number density. Barocchi and coau-
thors [38–40] showed that the complete behavior of any
normalized autocorrelation function of a classical many-
body system can be described by a generalized Langevin
equation, the exact solution of which can be written as
an infinite sum of exponential functions

C(t) =
∞
∑

j=1

Aj exp(zjt), (22)

where Aj and zj are mode amplitudes and decay coeffi-
cients respectively. Such modes can be associated with
relaxation channels in the system. If Aj and zj are com-
plex quantities, the corresponding mode and its complex
conjugate are both present in the series and, taken to-
gether, they represent an exponentially damped oscilla-
tion. Otherwise, real Aj and zj define a purely exponen-
tial decay.
An approximate solution to the generalized Langevin

equation can be found by truncating Eq. (22) at a finite
number of terms. The behavior of the coefficients can
then be studied by fitting the resulting function to exper-
imental/simulation data. This procedure can be difficult,
due to the large number of free fitting parameters.
Barocchi and coauthors found that the number of free

fitting parameters can be reduced by constraining the
solution. They showed that the zero time properties of
the solution given in Eq. (22) must obey the relation:

(

dmC(t)

dtm

)

t=0

= 0 (23)

where m is an odd integer. When a finite number of
exponential terms is retained, Eqs. (22) and (23) can
only be valid for m up to a certain value depending on
the approximation level and the model assumed. The
combination of Eqs. (22) and (23) allow the number of
free fitting parameters to be reduced.
As we shall show later in this work, the decay of the

intermediate scattering function F (k, τ) at a particular
wavevector can be accurately described by the superposi-
tion of two real exponentials (for the two diffusive decay
modes) and one complex conjugate pair exponential (for
the short time non-diffusive behavior). Therefore, in this
work we will approximate the solution by retaining the
first three terms in Eq. (22), this results in:

F (k, t) ≈ A1 exp(z1t) +A2 exp(z2t)

+ (A′

3 ± iA′′

3) exp((z
′

3 ± iz′′3 )t).
(24)

In line with usual experimental analysis, we can refer to
the first two decay modes as the short-time and long-time
diffusion modes with effective short-time Ds and long-
time DL diffusion coefficients. The complex exponential
can also be simplified into a damped cosine form. Doing
this results in

F (k, t) ≈ As exp(−k2Dst) +AL exp(−k2DLt)

+Ad exp(αt) cos(−βt+ φ).
(25)

where all coefficients are wavevector dependent and we
have included a factor of k2 in the real exponentials. Eq.
(25) is the final form that is fitted to the simulation data.
Fitting Eq. (25) to simulation data requires optimiza-

tion of 8 free fitting parameters. But, this number can
be reduced by constraining the solution using the rela-
tionship given in Eq. (23) for m = 1 and 3. Also, the
normalization condition of F (k, t = 0) = 1 allows an ad-
ditional variable to be eliminated, resulting in the total
elimination of 3 free parameters, thus reducing the com-
putational complexity of the problem.
The fitting of the multiexponential model was per-

formed by means of a program run in the Matlab [41]
environment, carried out by a built-in nonlinear least
squares algorithm. The implementation of the 3 con-
straints was done by using the inbuilt solve function to
give expressions for the chosen dependent parameters in
terms of the independent ones.

III. SIMULATION METHODS

The pair potential and parameters for our simulations
are identical to previous work [25] but we will include a
brief explanation here. We modeled the colloidal particle
and solvent using a Weeks-Chandler-Andersen (WCA)
potential (a shifted and truncated Lennard-Jones po-
tential) which is modified to include a hard-core. The
potential takes the form

φ(rij) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∞ if rij ≤ cab

ϵ

[(

σ

rij − cab

)12

−
(

σ

rij − cab

)6]

+ ϵ if cab < rij < cab + 21/6

0 otherwise

where rij is the centre-to-centre distance between the
particles i and j, ϵ is the depth of the potential well,
σ is the nominal length scale of the potential (in this
work ϵ = σ = 1 and therefore all results are given in re-
duced units). The cab parameter introduces a hard-core
to the potential where a and b denote the two interacting
species. This creates an excluded region which is used to
increase the size of the colloidal particle relative to the
solvent. A diagram of the potential is shown in Fig. 1.

0 2 4 6 8
rij

0

0.5

1

1.5

2

Φ
W

C
A

cab
Potential

FIG. 1. Diagram of pair potential between colloidal particles
with ϵ = σ = 1.00 and cab = 3.03.
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In this work we keep the values of the cab fixed for the
colloid-colloid (c11) and solvent-solvent (c22) interactions
at 3.03 and 0.000 respectively. The c12 parameter for the
colloid-solvent interaction is also set to 0.000 to remove
the depletion effects that are inherent in systems with
different sized particles. In usual hard-sphere simulations
the diameter of the particle is clear, but in this work we
are using a hard-core plus a WCA repulsive potential.
This WCA repulsive potential adds an extra diameter
that is not clearly defined.
Previous work has been done by Hess et al. to deter-

mine expressions for the effective diameter of WCA par-
ticles as a function of temperature [42]. These authors
found that the method which gave the best agreement
with the MD results was to define the effective diameter
d to be when the interaction potential is equal to Boltz-
mann’s constant times the temperature φ(d) = kBT . At
the reduced temperature of 1.0 used in this work, this
gives an extra diameter of σ to the particles due to the
WCA repulsion. This gives the colloidal particles an ef-
fective diameter of 4.03 times the diameter of the solvent
particles.
The mass of the colloidal particle was set with the goal

of making it approximately neutrally buoyant in the sol-
vent. The mass needed to do this was calculated in the
same way as McPhie [43], which for a size ratio d1/d2
of 4.03 gave a mass ratio m1/m2 of 50. Therefore, we
used a mass of 1.0 for the solvent particles and a mass of
50.0 for the larger particles. This size and mass ratio has
been shown to be large enough for the larger particle to
behave as a Brownian particle in the solvent [44].
All simulations were run using the MD package

LAMMPS [45] and the results were post-processed us-
ing in-house code. Simulations at each packing fraction
were done under NPT conditions at a reduced tempera-
ture of 1.00 and reduced pressure of 7.85. The time inte-
gration scheme used follows the time-reversible measure-
preserving Verlet integrator derived by Tuckerman et al.
[46] with a time step of 0.005. The temperature is held
fixed using a Gaussian thermostat while the pressure is
held fixed using a Nose-Hoover type barostat, both used
a damping parameter of 10. This was done in order to
better replicate the experimental conditions of a real col-
loidal suspension. All simulations were done with a total
of 108,000 particles, except for one larger system which
was done in order to calculate data for small k values of
the intermediate scattering function at the packing frac-
tion of 0.49. This simulation had 864,000 particles. Table
I gives the exact number of particles used in the simu-
lations, along with the average volume and calculated
packing fraction. The packing fraction Φ was calculated
from

Φ =
πNcd3

6V
(26)

where d is the diameter of the colloidal particles (d =
4.03 for all colloidal particles). In our previous work we
showed that calculating Φ for this system based on Eq.

(26) resulted in a phase behavior that matched closely to
that of a single component HS system [25].

TABLE I. Number of solvent particles Ns, colloidal particles
Nc, average volume ⟨V ⟩ and packing fraction Φ for the sys-
tems studied.

System
No.

Ns Nc ⟨V ⟩ Φ

1 107,967 33 128,606 0.01

2 107,652 348 128,550 0.09

3 107,325 675 128,597 0.18

4 106,988 1,012 128,600 0.27

5 106,650 1,350 128,887 0.36

6 106,313 1,687 129,085 0.44

7 106,145 1,855 129,315 0.49

8 849,160 14,840 1,028,848 0.49

In the following sections we will be mostly calculating
properties of the larger particles (meant to represent the
colloidal particles). Because of this, subscripts designat-
ing species will be dropped and unless otherwise stated
the properties being measured are for the colloidal parti-
cles only (i.e. the colloidal particle intermediate scatter-
ing function F11(k, τ) will just be represented as F (k, τ)
etc).

IV. RESULTS

A. Velocity autocorrelation function and self
diffusion coefficient

Fig. 2 displays results for the absolute value of the col-
loidal particle velocity autocorrelation function |C(τ)|. It
is displayed on a log-log scale as the decay of C(τ) covers
multiple orders of magnitude across a number of decades
in time. The curves shown cover a large range of packing
fractions from a dilute system (Φ = 0.09) to a system at
a packing fractions slightly lower than the freezing point
(Φ = 0.49). C(τ) has been calculated previously for this
model [25], but we include it here again as the quality of
the data has been greatly improved which allows a more
thorough comparison with pure HS simulation results, as
well as experimental data.
The most thorough study to date on the velocity au-

tocorrelation function for a pure HS system (no solvent)
was done by Williams and coworkers [47, 48]. They were
able to observe the -3/2 power law long-time tail (which
is the manifestation of diffusing transverse modes) and
velocity reversals (which are the result of damped com-
pression modes). For stable fluids, velocity reversals were
only observed for high packing fractions (Φ ≥ 0.44). In
Fig. 2 we also observe velocity reversals (indicated by the
spike downward on the log(|C(τ)|) plot where C(τ) be-
comes negative). The reversals are seen for all Φ shown
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(0.09 ≤ Φ ≤ 0.49), with the time it takes for the reversals
to occur decreasing as Φ increases.
Both the pure HS (without solvent) and our model

(with solvent) can be compared with available experi-
mental data. It is very difficult to determine experimen-
tally the complete behaviour of C(τ). The initial decay of
C(τ) (which gives the initial crossing through zero) is dif-
ficult to obtain accurately. Even so, reversals in C(τ) are
observed at packing fractions as low as Φ = 0.289 in ex-
perimental colloidal suspensions [50] where the long-time
decay of C(τ) occurs from below zero. This is consistent
with the results from our model, but disagrees with the
results from the pure HS system. The mismatch between
the sign of C(τ) at low to moderate Φ for the single com-
ponent HS fluid was pointed out in our previous work
[25], indicating that the current model possesses dynam-
ics which better resemble that of an experimental col-
loidal suspension. A possible reason why the pure HS
model fails to predict the reversals at low to moderate
packing fractions is because it neglects the solvent, and
therefore ignores hydrodynamic effects and momentum
transfer via the solvent, both of which could cause veloc-
ity reversals.

100 101 102

τ

10-6

10-4

10-2

|C
(τ)

|

Φ = 0.09
Φ = 0.18
Φ = 0.27
Φ = 0.36
Φ = 0.44
Φ = 0.49

FIG. 2. Plot of the colloidal particle velocity autocorrelation
function C(τ ) at packing fractions leading up to the freezing
point. The points where C(τ ) cross zero may be seen as a
sharp spike downward in this log-log graph.

However, current data for this model suffers from the
same limitations as experiment, in that the power-law
long-time decay of C(τ) falls within the noise and cannot
be observed. This is due to the smaller number of col-
loidal particles and the much larger mass, which results
is smaller velocities.
The colloidal particle self diffusion coefficient Ds is re-

lated to the ability of an individual colloidal particle to
diffuse through the liquid. This property was calculated
from Eq. (4) and is shown in Fig. 3. We have normal-
ized the data by dividing by the dilute limit value of
(5.93 ± 0.05)× 10−2. The maximum value of Ds occurs

0.544

y = -0.29x 2 -1.68x + 1.00

0 0.1 0.2 0.3 0.4 0.5 0.6
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0.8
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D s/D
0
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FIG. 3. Plot of the normalized colloidal particle self diffusion
coefficient Ds/D0 against packing fraction. Filled circles: our
MD data; open circles: BD data of Moriguchi [51]; triangles:
experimental data of van Megen and Underwood [52]; squares:
experimental data of van Blaaderen et al. [53]. Quadratic line
of best fit to MD data with the numerical value of x-intercept
(at 0.544) also shown.

in the dilute limit as the motion is not hindered by direct
interactions with other colloidal particles.
As the packing fraction increases, the ability of a sin-

gle colloidal particle to diffuse through the fluid is hin-
dered. This results in a decrease of the self diffusion
coefficient. In Fig. 3 it can be seen that results from pre-
vious Brownian Dynamics simulations by Moriguchi [51]
over-predict Ds when compared to experimental systems
[52, 53]. They were able to show that an inclusion of
a hydrodynamic correction brought BD and experiment
into agreement.
The current model model also over-estimate Ds (as

seen in Fig. 3) even though the solvent (and therefore
hydrodynamic effects) are included. This disagreement
could be due to the modified interaction parameters used
to reduce the depletion effects (c12 = 0). By reducing
the c12 parameter, the volume of the colloid as seen by
the solvent is much lower than the volume used in the
calculation of the packing fraction. This may have the
effect of diluting the hydrodynamic interactions.
To see where Ds extrapolates to zero (where the free

movement of the colloidal particles is completely re-
moved), a second order quadratic function was fitted
to the data and the x-intercept was calculated. This
is found to occur at φ = 0.544 ± 0.010 which is within
the uncertainty of the melting point φ = 0.545 where
the hard-spheres fully crystallise. This indicates that the
diffusive motion of the colloids is frozen out at this point.
The self diffusion coefficient of real colloidal suspen-

sions can be measured in DLS via the self intermediate
scattering function [55]. From the self intermediate scat-
tering function the mean squared displacement can be
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determined, which is related to the so called short and
long time self diffusion coefficients. Interestingly, the nor-
malised self diffusion coefficient of an experimental glass
forming system has been shown to go to zero at its glass
transition [55], rather than the melting point.

B. Mutual Diffusion Coefficient

In this model (as in real colloidal suspensions) the sol-
vent is explicitly present and so we have a binary fluid
with a single mutual diffusion coefficient [32]. Calcula-
tion of Dm (definition given in Eq. (6)) requires accu-
rate values of the phenomenological coefficient L11 and
the thermodynamic factor ∂µ1/∂c1. We will outline here
how these two quantities were calculated.
The phenomenological coefficient L11 was calculated

from the mass flux correlation function of the colloidal
particles defined in Eqs. (7), (8) and (9). The mass flux
correlation function was calculated every 5 time steps out
to a maximum delay time of 25,000 timesteps. Numer-
ical integration with the trapezoid rule was performed
on the correlation function and the integrals were found
to converge. The values of the integral for each packing
fraction are shown in Fig. 4. L11 is shown to increase as
Φ increases, but the rate of increase (given by the slope
of the plot) decreases as the freezing point is approached.
At the freezing point the slope is observed to almost go
to zero, and L11 appears to plateau.

0 0.1 0.2 0.3 0.4 0.5
Φ

0

0.1

0.2

0.3

0.4

0.5

L 11

FIG. 4. Plot of the phenomenological coefficient L11 calcu-
lated from the integral of the colloidal particle mass flux au-
tocorrelation function.

The second quantity that needs to be calculated is the
thermodynamic factor ∂µ1/∂c1 which is related to the
integrals of the radial distribution functions Gαβ . There
are a number of different methods available to calculate
the thermodynamic factors from MD simulation, such as
through the numerical integration of the radial distri-
bution functions [35], the Widom test particle insertion

method [56], from density fluctuations of a smaller sub-
system embedded in simulation box [57] or through the
static structure factors [37]. In this work we obtained
the thermodynamic factor through the static structure
factors by using Eq. (21). It is important to note that
Eq. (21) differs from the expression given by Nichols and
Wheeler [58] who previously proposed a simular method.
This is because the definition of the thermodynamic fac-
tors are different, but both methods produce the same
value for Dm when combined with their complete ex-
pression.
As an example of how the Sαβ(k → 0) values was calcu-

lated for each packing fraction, Fig. 5 shows a plot of the
static structure factors S11 (colloid-colloid), S12 (colloid-
solvent) and S22 (solvent-solvent) of the system at a pack-
ing fraction of 0.49. The data was plotted against k2 as
the S(k) should be an even function of k, and 5th order
polynomials in k2 were fitted to the low-k data. Although
it is possible that S(k) could be a non-analytic function
of k, and could therefore also depend on odd or fractional
powers of |k|, we saw no evidence of this in our data. By
extrapolating the polynomial in k2 back to zero k we were
able to accurately determine Sαβ(k → 0) values.

0 0.5 1 1.5
k2
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0.0
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FIG. 5. Plot of the low-k behavior of the static structure
factors: S11 (colloid-colloid), S12 (colloid-solvent) and S22

(solvent-solvent) of a system at a packing fraction of 0.49.
A 5th order polynomial line of best fit was used to obtain
Sαβ(k → 0) values.

This was done for a range of packing fractions from an
extremely dilute fluid (Φ = 0.01) up to a high density
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fluid (Φ = 0.49). The highest density fluid is slightly be-
low the freezing point that occurs at ΦF = 0.494. The
values of Sαβ calculated for each packing fraction were
used in (21) to calculate Gαβ , which are shown in Fig. 6.
The quantities G12 and G22 have almost negligible con-
tribution to the calculation of the thermodynamic factor
∂µ/∂c1 as they are two orders of magnitude smaller than
G11. The magnitude of G11 decreases as Φ increases, and
this results in an increase in ∂µ/∂c1 as the two are in-
versely related (from Eqs. (15) and (16)). The values of
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-300
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-1.16

-1.14

G
22

FIG. 6. Plot of the radial distribution function integrals of
G11 (colloid-colloid), G12 (colloid-solvent) and G22 (solvent-
solvent) at packing fractions Φ leading up to the freezing
point.

Gα,β were used in Eqs. (15) and (16) to calculate ∂µ/∂c1
for each Φ, these are plotted in Fig. 7. The thermody-
namic factor shows a decrease at low concentration, but
increases greatly on the approach to the freezing point.
Using the values given for L11 and ∂µ1/∂c1, the mutual

diffusion coefficient Dm was calculated and is shown in
Fig. 8. The mutual diffusion coefficient Dm shows an
increase on the approach to the freezing point. From the
contributions of L11 and ∂µ/∂c1 in Fig. 4 and 7 we see
that this increase in Dm results mainly from the ∂µ/∂c1
contribution rather than from L11, as the latter quantity
approaches a plateau near the freezing point.
Eq. (14) predicts that the low-k values of the interme-

diate scattering function will decay faster at higher pack-
ing fractions, even as the ability of the individual colloidal
particles to diffuse through the liquid decreases on the
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FIG. 7. Plot of the thermodynamic factor ∂µ/∂c1 at packing
fractions Φ leading up to the freezing point.
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FIG. 8. Plot of the mutual diffusion coefficient Dm at packing
fractions Φ leading up to the freezing point.

approach to the freezing point. This results in a broad-
ening of the decay times between the small wavevector
and large wavevector decay, which will be shown later.

C. Intermediate Scattering Function

In this section, calculations of the colloidal particle in-
termediate scattering function F (k, τ) will be shown for
the higher packing fractions Φ leading up to the freez-
ing point. The systems studied are described in Table I.
The wavevectors studied were those consistent with the
periodic boundaries of the simulation box (given in Eq.
(3)) up to n1 = n2 = n3 = 15. In this section we will
report wavevectors in the dimensionless form kd where d
is the diameter of the colloidal particles. This allows di-
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rect comparison with corresponding kd values measured
in light scattering experiments.
To show the change in behavior of F (k, τ) leading

up to the freezing point, we have displayed the calcula-
tions of F (k, τ) at the packing fractions of 0.27, 0.36 and
0.49 in Fig. 9 (data given as symbols). The wavevectors
shown have been chosen to cover a range from the low-
est wavevector allowed (consistent with periodic bound-
ary conditions) to just above the colloidal particle static
structure factor peak. Plots of ln(F (k, τ)) against k2τ
which exhibit regions of constant slope imply exponen-
tial decays in time, or simple Brownian diffusion. The
fits of the form given in Eq. (25) are also shown in Fig. 9
(lines).
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(b) Φ = 0.36
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(a) Φ = 0.27
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FIG. 9. Plot of the ln(F (k, τ )) against k2τ for packing frac-
tions of (a) 0.27, (b) 0.36 and (c) 0.49 for the kd values given
in the legend. The data for the lowest kd (dots) corresponds
to the lowest kd possible to calculate based on the box di-
mensions, and the second largest value (circles) corresponds
to the colloidal particle static structure factor peak.

For an extremely dilute colloidal suspension, the effects
of direct colloidal particle interactions are negligible due
to the large average distances between neighboring parti-
cles. This means their dynamics are governed by random
collisions with the surrounding solvent, so they effectively
move as Brownian particles. The F (k, t) in these dilute
suspensions (Φ ≈ 0.01) decay as a single exponential with

a k-independent diffusion coefficient. This is also seen in
light scattering experiments [7] (though there is a small
k dependence in the diffusion coefficient which is associ-
ated with polydispersity) and in our previous work using
the current computer simulation model [25].
Calculations for F (k, t) of a system at Φ = 0.27 are

shown in Fig. 9a. The decay for all wavevectors is (al-
most) linear, just as in a dilute system, but the slope
of the decay changes with each new k. This implies the
existence of time-independent diffusion with a wavevec-
tor dependent diffusion coefficient D(k). With the plot
displayed in this way, the lowest k-value has the largest
slope, indicating it has the largest effective diffusion co-
efficient.
As the wavevector is increased, the slope decreases up

to the structure factor peak of (kd)max = 6.24 (circles).
At wavevectors above the structure factor peak we see
a reversal in the trend, where the slope is seen to have
increased at kd = 7.27 (triangles) showing a minimum in
the diffusion coefficient at the structure factor peak. It
is well verified that in concentrated colloidal suspensions
the effective diffusion coefficient has a minimum at the
peak in S(k) [7, 9]. This minimum reflects the fact that
the strong fluctuations that occur at the peak will decay
slower than the weak fluctuations away from the peak.
It should be noted though that in order to properly fit
the data for Φ = 0.27, the second diffusive mode was still
needed (though it was very weak).
Fig. 9 also reveals the change in behavior of F (k, t) as

the packing fraction increases towards the freezing point.
At Φ = 0.36 (Fig. 9b) the slope is also seen to decrease
as the wavevector increases, and has a minimum at the
structure factor peak. Interestingly, the spread in the
slopes has been greatly increased compared to Φ = 0.27.
The slope at the lowest wavevector (kd = 0.50) has in-
creased compared to Φ = 0.27 at the same wavevector
(note the change in scale on the x-axis), while the slope at
the structure factor peak (kd = 6.56) has decreased. The
increasing slope at low wavevectors is the result of the in-
crease in the mutual diffusion coefficient (shown in Fig.
8) as it is this coefficient that governs the decay of F (k, t)
in the low wavevector limit. The decay of ln(F (k, t)) for
all wavevectors at Φ = 0.36 is also not quite linear, with
a slight non-linearity of the line of best fit most clearly
seen at kd = 4.94 (diamonds). This is indicative that the
effective diffusion coefficient is becoming time dependent.
Just below freezing at Φ = 0.49 (Fig. 9c) the two decay
modes are clearly seen, with a significant non-linearity
occurring at wavevectors between zero and the structure
factor peak.
This method of fitting Eq. (25) to find the behavior

of the short-time and long-time diffusion coefficients is
similar to that done to experimental results by Orsi et.
al. [27]. The multiexponential analysis procedure that
we performed on our data allows the contributions from
the individual terms in Eq. (25) to be separated and
studied. To better quantify the behavior of the modes
and their wavevector and packing fraction dependence,
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FIG. 10. Plot of F (k, t) data (symbols) for the three indicated packing fractions Φ together with the multiexponential fit
described in the text (red solid line through the data points). The left frames [(a)-(c)] are at a low wavevector (kd = 0.5), the
middle frames [(d)-(f)] are at a wavevector half-way to the structure factor peak (kd = 3.5) and the right frames [(g)-(i)] are
at the wavevector that corresponds to the structure factor peak (kd ≈ 7). The various components of the fit function are also
displayed separately according to the legend. Short-time and Long-time denote the real exponential terms ordered by increasing
decay time. Complex denotes the sum of the two complex conjugate exponentials, amounting to a damped oscillatory function.
For graphical clarity, not all available data points have been displayed.

we have plotted the total fit and the individual contri-
butions in Fig. 10. This was done for the 3 highest Φ
values, 0.36, 0.44 and 0.49 as all lower Φ exhibit mostly
single exponential decay.

The third term in Eq. (25) is the sum of two com-
plex conjugate exponentials, which gives a damped cosine
function. This mode is labelled complex in Fig. 10, and is
seen to be strongly damped and characterized by a very
low amplitude. This mode mainly determines the behav-
ior of F (k, τ) at very short times where non-exponential
decay is observed. We observe non-exponential behavior
at short times as the dynamics transition from atomic to
Brownian motion. The size and mass ratio compared to
the solvent is 4.03:1 and 50:1 respectively, rather than
being effectively infinite as it would be for a real Brow-
nian particle. Therefore, at very short time delays the

behavior is not diffusive, though this non-diffusive mode
quickly decays to zero leaving the two diffusive modes to
dominate.

The two diffusive modes (the two real exponential
terms in Eq. (25)) show interesting and complex de-
pendence on packing fraction and wavevector. The left
frames [(a)-(c)] of Fig. 10 show the decay at a very low
wavevector (kd = 0.5). In this low-wavevector limit,
F (k, τ) is expected to approach a single exponential as
the wavelengths being probed approach the macroscopic
diffusive limit (infinite wavelength). This behavior is ob-
served in the low-k results for the packing fraction of
Φ = 0.36 (Fig. 10a) where the dominant contribution
comes from the long-time diffusive mode, and the short
time mode has an amplitude that is near zero.

For the higher packing fractions in the low-k region
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(frames (b) and (c)), the long-time mode still dominates,
but the short-time mode is non-zero and has a greater
contribution. The second mode has a larger contribution
because the wavevector being studied is not low enough
to be in the macroscopic diffusive limit at these pack-
ing fractions. As the freezing point is approached, the
minimum wavevector needed to achieve the macroscopic
diffusive limit decreases. This minimum wavevector may
even be unattainable when the fluid crystallizes, as the
system would no longer be homogeneous. This may be
an important indicator of the onset of crystallization in
a system.
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FIG. 11. Plot of the amplitudes of the long-time DL (top) and
short-time DS (bottom) exponential decay modes for packing
fractions of 0.36 (dots), 0.44 (circles) and 0.49 (triangles).
Shifted exponential lines of best fit of the low-k data for DL

are also shown (dashed lines).

The middle frames [(d)-(f)] of Fig. 10 show the decay
at kd = 3.5 (which is roughly half-way to the peak in the
structure factor). A comparison between data at these
wavevectors and those at lower wavevectors shows there
is a large decrease in the decay rate (note the expanded
scale). This indicates that the effective short and long
time diffusion coefficients have greatly decreased as the
wavevector has increased. We also see an increase in the
amplitude of the faster decay mode, showing that it has
a larger contribution to the total fit.
Just as we observed at low wavevectors, the contribu-

tion of the short-time mode again increases as the packing
fraction is increased. This can be seen by comparing the
amplitude of the short-time mode in frames (d) and (f).
At the larger packing fractions of φ = 0.44 and 0.49 the
amplitude of the short-time mode is actually larger than
the long-time mode (seen in frames (e) and (f)).

The right frames [(g)-(i)] of Fig. 10 show the decay of
F (k, τ) at kd values that correspond to the main peak
in the colloidal component structure factor. The effec-
tive diffusion coefficients continue to show a monotonic
decrease as the packing fraction increases, shown by the
increased decay time. As mentioned earlier, this is con-
sistent with experimental results which show a minimum
in the diffusion coefficients at the structure factor peak
[7, 9]. The amplitudes of the modes however do not show
monotonic dependence on the wavevector. The long-time
diffusive mode amplitude has increased in the approach
to the structure factor peak, while the short-time one has
decreased.
To display in more detail the complete behavior of the

amplitudes and their dependence on packing fraction and
wavevector, Fig. 11 shows the amplitudes of the two dif-
fusive decay modes at the same packing fractions. As
previously observed, at low wavevectors the amplitude
of the long-time diffusive mode is almost unity, while the
short-time one is almost zero. This indicates that the de-
cay of F (k, τ) is close to a single exponential (as expected
in the macroscopic diffusive limit).
Because the long-time mode still has a non-zero am-

plitude in the k → 0 limit, it can be identified as a ther-
modynamic mode, where its decay rate in the macro-
scopic diffusive limit can be related to a thermodynamic
quantity (later we show this to be the mutual diffusion
coefficient). The short-time mode only exists for non-
zero k, so can be identified as a kinetic mode which can
not be related to any bulk property of the fluid. It can
also be seen that the wavevector where the long-time dif-
fusive mode amplitude goes to unity (or the short-time
amplitude goes to zero) decreases as the freezing point is
approached, and will most likely disappear when crystal-
lization occurs.
To better quantify the packing fraction where the

macroscopic diffusive limit can not be reached, a simple
shifted exponential fit was done to the small wavevectors
values of AL as shown in Fig. 11 (dashed lines). The kd
values where the exponential fits equal unity (when the
macroscopic diffusive limit is reached) are displayed in
Fig. 12 and are denoted by (kd)M . These three (kd)M
values are shown to have a linear dependence on Φ, and
an extrapolation of the linear fit to the Φ-axis identifies
the packing fraction of Φ ≈ 0.546 as when the diffusive
limit disappears. This is extremely close to the melting
point of Φ = 0.545 where HS systems completely crystal-
lize and macroscopic diffusion is no longer possible.
The non-zero wavevector behavior of the amplitudes

shows complex dependence. As seen in Fig. 11, the short-
time mode amplitude decreases to zero as kd → 0, has a
local maximum at kd ≈ 3 and then a local minimum at
the structure factor peak. It is interesting to note that
although the local minimum at the structure factor peak
depends on the packing fraction, the local maximum at
kd ≈ 3 does not. A complete explanation of the inter-
esting non-monotonic behavior of the mode amplitudes
is currently not known.
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FIG. 12. Plot of the minimum wavevector (kd)M when single
exponential decay of the intermediate scattering function is
observed at each packing fraction Φ. Error bars calculated
based on the standard errors of fit coefficients in Fig. 11. Un-
weighted linear fit also shown with x-intercept of 0.546.

Unlike the amplitudes, the effective long-time and
short-time diffusion coefficients show a monotonic depen-
dence on the wavevector between kd = 0 and (kd)max.
Previous DLS results [28] showed that the inverse of
the effective diffusion coefficients correlate well with the
static structure factor. To check that this is also true for
this model colloid, the inverse of the short-time and long-
time diffusion coefficients are plotted in Fig. 13, along
with the scaled static structure factors.
In line with what is seen in experimental studies, the

inverses of the diffusion coefficients roughly follow the
static structure factor. Both have peaks at (kd)max,
which corresponds to the value of the structure factor
peak. Also, both approach zero in the k → 0 limit. From
this we can deduce that the diffusion coefficients (inverse
of data in Fig. 13) have maxima at k → 0 and minima
at the structure factor peak (as expected).
The similarity of the shapes of DL and Ds implies that

they may be directly proportional, which would confirm
the scaling law proposed by Segrè and Pusey [28]. In
order to see if this scaling is observed with the current
model, Fig. 14 shows the calculated ratio Ds/DL for all
available k vectors at the packing fractions of 0.36, 0.44
and 0.49.
Segrè and Pusey [28] studied the intermediate scat-

tering function of an experimental colloidal suspension
over the wavevector range 2 ≤ kd ≤ 7.8 and found the
ratio Ds/DL was constant for 5 ≤ kd ≤ 7.8 (around
the structure factor peak). They found that by divid-
ing ln(F (k, τ)) by Dsk2, the decays at the wavevectors
around the structure factor peak fell onto (roughly) a
single master curve. Their work was done for a packing
fraction of 0.465.
Data for Φ = 0.44 (which is the closest Φ to that stud-

ied by Segrè and Pusey) is shown in Fig. 14. We see that
the ratio is not constant, but has a wavevector depen-
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FIG. 13. Inverse diffusion coefficients of the long-time DL

and short-time DS exponential decay modes for packing frac-
tions of 0.36 (dots), 0.44 (circles) and 0.49 (triangles). Static
structure factor data is also plotted (dashed lines) where the
data has been scaled to match at the peaks.

dence. Even in the region studied by Segrè and Pusey
(5 ≤ kd ≤ 7.8), the ratio is not constant, showing a local
maximum in this region.
The data for all packing fractions in Fig. 14 exhibit

the same general shape, but the uncertainties are larger
where the second diffusive mode is weak. Each packing
fraction shows a slight peak around the position of the
structure factor peak.
At kd < 5 there is a slight increase in the ratio with a

local maximum occurring at ≈ 2.6kd. This is around the
range where nonlinearity of ln(F (k, τ)) is most notice-
able. This is partly due to the increase in the ratio, but
also due to the increase in the amplitude of the faster
mode in this region. At extremely small wavevectors
(kd < 1.5) there is a rapid decrease in the ratio. This
ratio could possibly extrapolate to 2 at zero wavevector,
but this is impossible to determine from the current data.
The average ratio over the whole range of wavevectors in-
creases with packing fraction, showing the divergence of
the two decay modes as the freezing point is approached.
Since the k → 0 behavior of F (k, t) should be given

by the solution to the hydrodynamic equation (14), the
decay should be a single exponential with a decay coef-
ficient equal to the mutual diffusion coefficient Dm. To
check this, we have plotted the low-k values of DL in
Fig. 15 (symbols) along with the mutual diffusion coeffi-
cients calculated from equilibrium MD using the Green-
Kubo and Kirkwood-Buff theory (arrows). The data for
each Φ given in Fig. 15 has been shifted up by increments
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FIG. 14. Plot of the ratio Ds/DL for packing fractions of (a)
0.36, (b) 0.44 and (c) 0.49.

of 0.5 for clarity.
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FIG. 15. Plot of low-k values of the long time diffusion coef-
ficient DL for packing fractions of 0.27 (dots), 0.36 (circles),
0.44 (triangles) and 0.49 (squares). Arrows on y-axis indicate
the value of the mutual diffusion coefficients calculated for
the corresponding packing fractions. Fits of the form given
in Eq. (27) are also shown. Corresponding plots have been
shifted up by increments of 0.5 for clarity.

Previous work done by Hansen et al. [59] showed that

the wavevector dependence of the viscosity for a simple
fluid could be fitted well with a Lorentzian type function
with a variable wavevector exponent. To see if this is also
true for the wavevector dependent diffusion coefficient we
have followed the same procedure and fitted the low-k
data with a similar functional form given as:

DL(k) =
Dm

1 + α|k|β
(27)

where the coefficients α and β are free fitting parameters
that are not wavevector dependent. Fig. 15 shows that
this functional form fits the data quite well over the range
of wavevectors investigated at each packing fraction.
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α
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α
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FIG. 16. Packing fraction dependence of fit coefficients α and
β from Eq. (27). Error bars calculated based on the standard
errors of fit coefficients in Fig. 15.

The packing fraction dependence of the parameters α
and β are shown in Fig. 16. From this figure it is seen that
the exponent β is fairly constant over the range of pack-
ing fractions studied. Its value is very close to 2, which
indicates that the fitting function is in fact a Lorentzian.
The α coefficient however, shows a strong dependence on
the packing fraction. As the packing fraction increases
towards the freezing point, α increases by a factor of 18
over the range studied. The increasing value of α rein-
forces the idea that the wavevector needed to achieve the
macroscopic diffusive limit decreases as the packing frac-
tion increases. This arises because as α increases, lower
values of k are needed before the term α|k|β in Eq. (27)
is effectively zero.

V. CONCLUSION

Molecular dynamics simulations were conducted on a
model colloidal suspension with explicit solvent. In this
study, we extended previous work and further tested the
validity of the model. This was done by studying dy-
namical properties such as the velocity autocorrelation
function, diffusion coefficients and the intermediate scat-
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tering function which were then compared with available
experimental data.
The velocity autocorrelation function was found to

have velocity reversals for all moderate to high packing
fractions (Φ ≥ 0.09). This behavior is also seen in ex-
perimental systems at Φ ≥ 0.289, but is only observed
in single component HS systems at much higher packing
fractions (Φ ≥ 0.44). This indicates that inclusion of a
solvent is needed in order to get dynamics which best
match experimental colloidal suspensions.
The self diffusion coefficient was found to decrease

as the packing fraction increased, showing that interac-
tions with other colloidal particles inhibit motion through
the solvent. This model over-predicted the value of the
normalized self-diffusion coefficient, possibly due to the
modified interaction parameters used to reduce deple-
tion effects. The self diffusion coefficient extrapolates
to zero near the melting point (Φ = 0.544 compared to
Φm = 0.545) where the diffusive motion of the colloidal
particles is completely inhibited and the system crystal-
lizes.
Unlike the self diffusion coefficient, the mutual dif-

fusion coefficient was found to increase as the packing
fraction increased. This was due almost entirely to the
increase in the thermodynamic factor on the approach
to the freezing point. The mutual diffusion coefficient
was shown to govern the low-k decay of the intermediate
scattering function, and so an increase in the coefficient
corresponded to the increase in the decay rate of the in-
termediate scattering function at low wavevectors.
Lastly, after performing a multiexponetial analysis of

the intermediate scattering function we found that the
decay can be accurately modeled with two real exponen-
tials (for the two diffusive decay modes) and one com-
plex conjugate pair of exponentials (for the short time
non-diffusive behavior). The two real exponential de-
cay modes are similar to what is seen in experimental
systems, and are usually associated with long-time and
short-time diffusion coefficients.

Both the short-time and long-time diffusion coeffi-
cients decreased monotonically with increasing wavevec-
tor, while their corresponding mode amplitudes showed a
non-monotonic dependence. The amplitude of the short-
time exponential mode decreased to zero in the k → 0
macroscopic diffusive limit, indicating that this is a ki-
netic mode which only exists for non-zero k. The long-
time mode remained in the low-k limit, leading to a single
exponential decay of the intermediate scattering func-
tion. The decay rate of this thermodynamic mode in the
k → 0 limit was found to be equal to the macroscopic mu-
tual diffusion coefficient calculated independently from
Green-Kubo and Kirkwood-Buff theory.
We found that the minimum wavevector needed to be

effectively in the macroscopic diffusive limit (single ex-
ponential decay) decreased as the packing fraction in-
creased, and a simple extrapolation shows the minimum
wavevector going to zero at the melting point where
macroscopic diffusion can no longer occur. This indicates
that the packing fraction where the fluid completely crys-
tallizes may be predicted by studying the decay of the
density fluctuations of the fluid well below the melting
point.
By studying the two diffusive modes we were also able

to test the scaling law proposed by Segrè and Pusey. We
found that the ratio of the long and short time diffusion
coefficients around the structure factor peak was not con-
stant, but had wavevector dependent behaviour, in dis-
agreement with the proposed scaling law.
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