104 research outputs found

    Benchmarking ChatGPT-4 on ACR Radiation Oncology In-Training (TXIT) Exam and Red Journal Gray Zone Cases: Potentials and Challenges for AI-Assisted Medical Education and Decision Making in Radiation Oncology

    Full text link
    The potential of large language models in medicine for education and decision making purposes has been demonstrated as they achieve decent scores on medical exams such as the United States Medical Licensing Exam (USMLE) and the MedQA exam. In this work, we evaluate the performance of ChatGPT-4 in the specialized field of radiation oncology using the 38th American College of Radiology (ACR) radiation oncology in-training (TXIT) exam and the 2022 Red Journal gray zone cases. For the TXIT exam, ChatGPT-3.5 and ChatGPT-4 have achieved the scores of 63.65% and 74.57%, respectively, highlighting the advantage of the latest ChatGPT-4 model. Based on the TXIT exam, ChatGPT-4's strong and weak areas in radiation oncology are identified to some extent. Specifically, ChatGPT-4 demonstrates good knowledge of statistics, CNS & eye, pediatrics, biology, and physics but has limitations in bone & soft tissue and gynecology, as per the ACR knowledge domain. Regarding clinical care paths, ChatGPT-4 performs well in diagnosis, prognosis, and toxicity but lacks proficiency in topics related to brachytherapy and dosimetry, as well as in-depth questions from clinical trials. For the gray zone cases, ChatGPT-4 is able to suggest a personalized treatment approach to each case with high correctness and comprehensiveness. Most importantly, it provides novel treatment aspects for many cases, which are not suggested by any human experts. Both evaluations demonstrate the potential of ChatGPT-4 in medical education for the general public and cancer patients, as well as the potential to aid clinical decision-making, while acknowledging its limitations in certain domains. Because of the risk of hallucination, facts provided by ChatGPT always need to be verified

    Automatic Rating of Hoarseness by Text-based Cepstral and Prosodic Evaluation

    Full text link
    The standard for the analysis of distorted voices is perceptual rating of read-out texts or spontaneous speech. Automatic voice evaluation, however, is usually done on stable sections of sustained vowels. In this paper, text-based and established vowel-based analysis are compared with respect to their ability to measure hoarseness and its subclasses. 73 hoarse patients (48.3±16.8 years) uttered the vowel /e/ and read the German version of the text “The North Wind and the Sun”. Five speech therapists and physicians rated roughness, breathiness, and hoarseness according to the German RBH evaluation scheme. The best human-machine correlations were obtained for measures based on the Cepstral Peak Prominence (CPP; up to |r | = 0.73). Support Vector Regression (SVR) on CPP-based measures and prosodic features improved the results further to r ≈0.8 and confirmed that automatic voice evaluation should be performed on a text recording

    Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshellwaste: an overview

    Get PDF
    As the current global trend towards more stringent environmental standards, technical applicability and cost-effectiveness became key factors in the selection of adsorbents for water and wastewater treatment. Recently, various low-cost adsorbents derived from agricultural waste, industrial by-products or natural materials, have been intensively investigated. In this respect, the eggshells from egg-breaking operations constitute significant waste disposal problems for the food industry, so the development of value-added by-products from this waste is to be welcomed. The egg processing industry is very competitive, with low profit margins due to global competition and cheap imports. Additionally, the costs associated with the egg shell disposal (mainly on landfill sites) are significant, and expected to continue increasing as landfill taxes increase. The aim of the present review is to provide an overview on the development of low-cost adsorbents derived from eggshell by-products

    The Science Performance of JWST as Characterized in Commissioning

    Get PDF
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies

    The Mid-infrared Instrument for JWST and Its In-flight Performance

    Get PDF
    The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 ÎŒm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∌ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    • 

    corecore