54,822 research outputs found

    BILIPROTEINS FROM THE BUTTERFLY Pieris brassicae STUDIED BY TIME-RESOLVED FLUORESCENCE AND COHERENT ANTI-STOKES RAMAN SPECTROSCOPY

    Get PDF
    The fluorescence decay time of the biliverdin IX7 chromophore present in biliproteins isolated from Pieris brassicae is determined to be 44 ± 3 ps. This value suggests a cyclic helical chromophore structure. The vibrational frequencies determined by CARS-spectroscopy are compared with those of model compounds. The data confirm that the chromophore in the protein-bound state adopts a cyclic-helical, flexible conformation

    Magnetic field induced 3D to 1D crossover in Sr0:9La0:1CuO2

    Full text link
    The effect of the magnetic field on the critical behavior of Sr0:9La0:1CuO2 is explored in terms of reversible magnetization data. As the correlation length transverse to the magnetic field Hi,applied along the i-axis, cannot grow beyond the limiting magnetic length LHi, related to the average distance between vortex lines, one expects a magnetic field induced finite size effect. Invoking the scaling theory of critical phenomena we provide clear evidence for this effect. It implies that in type II superconductors there is a 3D to 1D crossover line Hpi(T). Consequently, below Tc and above Hpi(T) uperconductivity is confined to cylinders with diameter LHi(1D). Accordingly, there is no continuous phase transition in the (H,T)-plane along the Hc2-lines as predicted by the mean-field treatment.Comment: 4 pages, 5 figure

    Finite-size and pressure effects in YBa_2Cu_4O_8 probed by magnetic field penetration depth measurements

    Full text link
    We explore the combined pressure and finite-size effects on the in-plane penetration depth \lambda_{ab} in YBa_2Cu_4O_8. Even though this cuprate is stoichiometric the finite-size scaling analysis of \lambda_{ab}^{-2}(T) uncovers the granular nature and reveals domains with nanoscale size L_{c} along the c-axis. L_{c} ranges from 33.2 Angstrom to 28.9 Angstrom at pressures from 0.5 to 11.5 kbar. These observations raise serious doubts on the existence of a phase coherent macroscopic superconducting state in cuprate superconductors.Comment: 7 pages, 6 figure

    The Molecular Gas Distribution and Schmidt Law in M33

    Full text link
    The relationship between the star formation rate and surface density of neutral gas within the disk of M33 is examined with new imaging observations of CO J=1-0 emission gathered with the FCRAO 14m telescope and IRAS HiRes images of the 60 micron and 100 micron emission. The Schmidt law, Sigma_SFR ~ Sigma_gas^n, is constructed using radial profiles of the HI 21cm, CO, and far infrared emission. A strong correlation is identified between the star formation rate and molecular gas surface density. This suggests that the condensation of giant molecular clouds is the limiting step to star formation within the M33 disk. The corresponding molecular Schmidt index, n_{mol}, is 1.36 +/- 0.08. The star formation rate has a steep dependence on total mass gas surface density, (Sigma_{HI}+Sigma_{H_2}), owing to the shallow radial profile of the atomic gas which dominates the total gas surface density for most radii. The disk pressure of the gas is shown to play a prominent role in regulating the molecular gas fraction in M33.Comment: 19 pages + 5 figures. Accepted for publication in Ap

    Superluminal Caustics of Close, Rapidly-Rotating Binary Microlenses

    Get PDF
    The two outer triangular caustics (regions of infinite magnification) of a close binary microlens move much faster than the components of the binary themselves, and can even exceed the speed of light. When ϵ>1\epsilon > 1, where ϵc\epsilon c is the caustic speed, the usual formalism for calculating the lens magnification breaks down. We develop a new formalism that makes use of the gravitational analog of the Li\'enard-Wiechert potential. We find that as the binary speeds up, the caustics undergo several related changes: First, their position in space drifts. Second, they rotate about their own axes so that they no longer have a cusp facing the binary center of mass. Third, they grow larger and dramatically so for ϵ>>1\epsilon >> 1. Fourth, they grow weaker roughly in proportion to their increasing size. Superluminal caustic-crossing events are probably not uncommon, but they are difficult to observe.Comment: 12 pages, 7 ps figures, submitted to Ap

    3D-xy critical properties of YBa2Cu4O8 and magnetic field induced 3D to 1D crossover

    Full text link
    We present reversible magnetization data of a YBa2Cu4O8 single crystal and analyze the evidence for 3D-xy critical behavior and a magnetic field induced 3D to 1D crossover. Remarkable consistency with these phenomena is observed in agreement with a magnetic field induced finite size effect, whereupon the correlation length transverse to the applied magnetic field cannot grow beyond the limiting magnetic length scale L_H. By applying the appropriate scaling form we obtain the zero-field critical temperature, the 3D to 1D crossover, the vortex melting line and the universal ratios of the related scaling variables. Accordingly there is no continuous phase transition in the (H,T)-plane along the H_c2-lines as predicted by the mean-field treatment.Comment: 8 pages, 4 figure

    Structural, magnetic, and transport properties of Co2_2FeSi Heusler films

    Full text link
    We report the deposition of thin Co2_2FeSi films by RF magnetron sputtering. Epitaxial (100)-oriented and L21_1 ordered growth is observed for films grown on MgO(100) substrates. (110)-oriented films on Al2_2O3_3(110) show several epitaxial domains in the film plane. Investigation of the magnetic properties reveals a saturation magnetization of 5.0 muB/f.u.mu_B/f.u. at low temperatures. The temperature dependence of the resistivity rhoxx(T)rho_{xx}(T) exhibits a crossover from a T^3.5 law at T<50K to a T^1.65 behaviour at elevated temperatures. rhoxx(H)rho_{xx}(H) shows a small anisotropic magnetoresistive effect. A weak dependence of the normal Hall effect on the external magnetic field indicates the compensation of electron and hole like contributions at the Fermi surface.Comment: 10 pages, 9 figures to be published in J. Phys. D: Appl. Phy

    Magnetic field induced finite size effect in type-II superconductors

    Get PDF
    We explore the occurrence of a magnetic field induced finite size effect on the specific heat and correlation lengths of anisotropic type-II superconductors near the zero field transition temperature Tc. Since near the zero field transition thermal fluctuations are expected to dominate and with increasing field strength these fluctuations become one dimensional, whereupon the effect of fluctuations increases, it appears unavoidable to account for thermal fluctuations. Invoking the scaling theory of critical phenomena it is shown that the specific heat data of nearly optimally doped YBa2Cu3O7-x are inconsistent with the traditional mean-field and lowest Landau level predictions of a continuous superconductor to normal state transition along an upper critical field Hc2(T). On the contrary, we observe agreement with a magnetic field induced finite size effect, whereupon even the correlation length longitudinal to the applied field H cannot grow beyond the limiting magnetic length L(H). It arises because with increasing magnetic field the density of vortex lines becomes greater, but this cannot continue indefinitely. L(H) is then roughly set on the proximity of vortex lines by the overlapping of their cores. Thus, the shift and the rounding of the specific heat peak in an applied field is traced back to a magnetic field induced finite size effect in the correlation length longitudinal to the applied field.Comment: 8 pages, 4 figure

    Direct Detection of Giant Close-In Planets Around the Source Stars of Caustic-Crossing Microlensing Events

    Get PDF
    We propose a direct method to detect close-in giant planets orbiting stars in the Galactic bulge. This method uses caustic-crossing binary microlensing events discovered by survey teams monitoring the bulge to measure light from a planet orbiting the source star. When the planet crosses the caustic, it is more magnified than the source star; its light is magnified by two orders of magnitude for Jupiter size planets. If the planet is a giant close to the star, it may be bright enough to make a significant deviation in the light curve of the star. Detection of this deviation requires intensive monitoring of the microlensing light curve using a 10-meter class telescope for a few hours after the caustic. This is the only method yet proposed to directly detect close-in planets around stars outside the solar neighborhood.Comment: 4 pages, 2 figures. Submitted to ApJ Letter

    A Comparison of Phycocyanins from Three Different Species of Cyanobacteria Employing Resonance-Enhanced Coherent Anti-Stokes Raman Spectroscopy

    Get PDF
    Resonance-enhanced coherent anti-Stokes Raman spectra are recorded for monomers and trimers of phycocyanin from three different cyanobacteria: Westiellopsis prolifica, Mastigocladus laminosus and Spirulina platensis. It is shown that upon aggregation from monomer to trimer the electronic structures of both the α84 and β84 chromophores are changed. The spectra of the trimers originating from S. platensis and M. laminosus are very similar to each other, but distinctly different from the spectrum of W. prolifica
    corecore