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We explore the occurrence of a magnetic field induced finite size effect on the specific heat and
correlation lengths of anisotropic type-II superconductors near the zero field transition tempera-
ture Tc. Since near the zero field transition thermal fluctuations are expected to dominate and with
increasing field strength these fluctuations become one dimensional, whereupon the effect of fluc-
tuations increases, it appears unavoidable to account for thermal fluctuations. Invoking the scal-
ing theory of critical phenomena it is shown that the specific heat data of nearly optimally doped
YBa2Cu3O7�� are inconsistent with the traditional mean-field and lowest Landau level predic-
tions of a continuous superconductor to normal state transition along an upper critical field
H Tc2( ). On the contrary, we observe agreement with a magnetic field induced finite size effect,
whereupon even the correlation length longitudinal to the applied field H cannot grow beyond the
limiting magnetic length LH � �0/H. It arises because with increasing magnetic field the den-
sity of vortex lines becomes greater, but this cannot continue indefinitely. LH is then roughly set
on the proximity of vortex lines by the overlapping of their cores. Thus, the shift and the rounding
of the specific heat peak in an applied field is traced back to a magnetic field induced finite size ef-
fect in the correlation length longitudinal to the applied field.
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The superconductor to normal state transition in
conventional low Tc materials appears to be well de-
scribed by the Ginzburg—Landau mean-field approxi-
mation. Because of the large correlation volume in
these materials, the region in which critical fluctua-
tions are important is too small to be accessible experi-
mentally. In contrast, with the discovery of supercon-
ductivity in the cuprates, a new era started [1].
Indeed, marked deviations from mean-field behavior
have been observed over a temperature range of the or-
der of10 K above and below Tc [2–22]. Theoretical ex-
pectations of the kind of critical behavior which might
be observed are: (i) If fluctuations in the vector poten-
tial can be ignored, then the zero-field transition be-
longs to the universality class of the three-dimensional
XY-model, as is the superfluid transition in 4He. In
an applied magnetic field the critical behavior is then
equivalent to that of uniformly rotating 4He near the
superfluid transition [22,23]; (ii) When fluctuations

in the vector potential are included to the charge of
the Cooper pairs, entering via the effective dimen-
sionless charge ~e / /� �� � �1 , charged critical beha-
vior is expected to occur in which both the correlation
length � and the magnetic penetration depth � grow
with the same critical exponent by approaching Tc
from below [24–33].

However, in extreme type-II superconductors
where � �� 1 the effective charge ~e is very small. As a
consequence the region close to Tc, where the system
crosses over to the regime of charged fluctuations, be-
comes too narrow to access. For instance, optimally
doped YBa2Cu3O7��, while possessing an extended
regime of critical fluctuations, is too strongly type-II
to observe charged critical fluctuations [2–22]. In
strongly type-II superconductors (� �� 1) the cross-
over upon approaching Tc is thus initially to the criti-
cal regime of a weakly charged superfluid where the
fluctuations of the order parameter are essentially
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those of an uncharged superfluid or XY-model. Fur-
thermore, there is the inhomogeneity induced finite
size effect which renders the asymptotic critical
regime unattainable [20,21]. However, underdoped
cuprates appear to open a window onto the charged
critical regime because � becomes rather small in this
doping regime. Here the cuprates undergo a quantum
superconductor to insulator transition in the under-
doped limit [16,22] and correspond to a 2D disordered
bosonic system with long-range coulomb interactions.
Close to this quantum transition Tc, � ab, and � ab scale
as Tc ab� �� 2 � �� ab

z [16,22], yielding with the dynamic
critical exponent z � 1 [16,22,34–36], �ab cT� . Re-
cent measurements of the magnetic in-plane penetra-
tion depth of underdoped YBa2Cu3O659. clearly un-
covered critical behavior associated with a charged
critical point, in which both the coherence length and
the magnetic penetration depth grow by approaching
Tc from below with the same critical exponent [37].
Thus, as far as static zero field critical phenomena are
concerned, there is little doubt that near optimum
doping the observable critical behavior of bulk
YBa2Cu3O7�� is governed by the three-dimensio-
nal (3D) XY universality class. Accordingly, we ex-
pect that the critical behavior in an applied magnetic
field is equivalent to that of uniformly rotating 4He
near the superfluid transition [22,23]. The singular
part of the free energy per unit volume should then
scale as [16,22]
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for a magnetic field Hc applied parallel to the c-axis.
G z( ) is a universal scaling function,
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while the singular part of the specific heat,
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� denotes the density and c H Tc( , ) is in units of
erg g • K/( ). In the 3D-XY universality class are the
universal quantities Q� , R� , �, and 
 given by [38]
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In the presence of a sufficiently small magnetic field
Hc, the specific heat is then expected to have a singu-
lar part which exhibits the scaling behavior

~( , ) ( )c H T
A H

z F z

A

c
c ab

/

/�
�

�

�
�

�

�

�
�

�

�

�
�

� �

�




�




� �

� �0
2

0

2

2

�

H
x F x x z

c ab

/

/ /�
� �

� � �0
2

0

2

1 2 1 2

�

�

�

�
�

�

�

�
�

�

�

� � � �( ), .

(6)

The magnetization data [5,10] and the zero-field
specific heat measurements of YBa2Cu3O7�� [4,9,16]
agree well with these predictions. In a nonzero applied
field, one can test the scaling form (6) of the specific
heat by the extent to which data for ~( , )c H T Hc c

/� �2

collapse to a common curve when plotted as a function
of x. Here, matters are complicated by the fact that a
different kind of scaling behavior
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is expected when only the lowest Landau level (L) is
significantly occupied [39,40]. Here T T Hc c
 2( ), or
equivalently, H H Tc c� 2( ) is the upper critical field
of the Ginzburg–Landau theory. Since 
 in Eq. (6) is
very small, and 2 4 3� � / , the two predictions are
rather hard to distinguish [41]. Some authors argue
that lowest-Landau-level scaling works just as well as
critical-point scaling [42–52].

Theoretically, the scaling form (6) is an unambigu-
ous prediction of the theory of critical phenomena and
ought to be observed sufficiently close to the zero-
field critical point. On the other hand, lowest-Lan-
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dau-level scaling, relies on the assumption that the
correlation length longitudinal to the applied mag-
netic field, diverges along the line T Hc2( ) [53],
whereupon a continuous phase transition from the
superconducting to the normal state is predicted to oc-
cur. Accordingly, the behavior of the correlation
length longitudinal to the applied field is essential to
verify the lowest Landau level prediction. In this con-
text it is instructive to rewrite the scaling variable z
(Eq. (1)) in the form
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with a � 312. [20], related to the average distance be-
tween vortex lines [20,22,54–56]. The scaling func-
tion G z( ) is then identical to that of a system with
finite extent LHc

in the ab-plane [57,58]. As a conse-
quence, fluctuations which are transverse to the ap-
plied field are stiff and the corresponding correlation
lengths cannot grow beyond

� �i j k H/ aH L i j k
k

� � � � � ��0 ( ) , . (9)

Hence, the fluctuations of a bulk superconductor in a
magnetic field are longitudinal to the field and for
this reason one-dimensional, as noted by Lee and
Shenoy [59]. Noting that fluctuations become more
important with reduced dimensionality, one expects
that the remaining fluctuations, which are longitudi-
nal to the applied field, remove the mean-field transi-
tion at T Hc c2( ). Indeed, thermal fluctuations destroy
the ordered phase in one-dimensional systems with
short-range interactions. Furthermore, calculations
treating these interactions within the Hartree approx-
imation [39,40,54,60], and generalizations thereof
[41,61,62], find that the correlation length longitudi-
nal to the applied field remains bounded as well. In
this case the correlation length � c cH t�( , ) adopts the
scaling form
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The scaling function must behave as

S x S x s x� �� 	� � � 	 �( ) , ( ) | | ,1 0 0
� (11)

so that for Hc � 0, � �

c cH t t( , ) | |� � and for t � 0,
� c c cH t /H( , ) � �0 . Thus, the divergence of the
correlation length � c cH t�( , ) is removed and it adopts
a maximum at T H Tp c c( ) � , yielding the line
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On the other hand, the specific heat scales according
to Eq. (3) as
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In this case the scaling function behaves as
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as obtained from Eqs. (10) and (13), reduces in these
limits to

� � �

c c cH t c H t( , ) | ~( , )| ./� (16)

Thus, when this scenario holds true, the specific heat
probes essentially the correlation length longitudinal
to the applied field. As a remnant of the singularity
at Tc in zero field it should exhibit a so called finite
size effect [57,58], resulting in a smooth peak around
Tp because the correlation length � c ct H( , ) cannot
grow beyond � c p ct H( , ) (Eq. (12)). Furthermore,
given experimental data for ~( , )c H tc , this scenario can
be verified. Indeed in the limits Hc � 0 and t � 	 0
the critical behavior | ~( , )| | |c H t tc

/
c

� � ��� � �

0 with
� �c c/0 0 2 28� � � . (Eqs. (5)) should hold. This allows to
circumvent the aforementioned difficulties associated
with the comparison of scaling functions with the
prediction of the lowest-Landau-level approach. In-
deed, if there is a magnetic field induced finite size ef-
fect on the correlation length longitudinal to the ap-
plied field, the transition is rounded and the
assumption of an upper critical field Hc2 is not justi-
fied.

Here we analyze the specific heat data of Roulin
et al. [49] to verify the magnetic field induced finite
size scenario. In Fig. 1,a we depicted the data for
the YBa2Cu3O7�� single crystal in terms of
~( , )c H tc � c H T /T Bc( , ) 
 vs. t T/Tc� 
 1 with B �
� 0.1717 J/(K2·mol) and Tc � 92.77 K. The solid and
dashed lines are ~( , ) ( , ) ~ | |c H t c H T /T B A tc c� 
 � � ��

with ~A� � –0.0672 J/(K2·mol), ~ .A� � 
0 0685 J/(K2·mol),
and 
 � 
0 01. (Eq. (5)). Using the relations
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A /� �( ( ))J K•mol ~A Tc
� �, A� � �( )cm 3 107 / k VB( )mol �

� �A /( ( ))J K•mol , andVmol � 8 cm3 we obtain for A�

the estimate A� � 5 64. •1020 cm �3 and with the uni-
versal relations (3) and (5) for the correlation volume
and the critical amplitudes of the zero field correlation
lengths the estimates

( ) , . , . ,[ ]� � � �ab c ab c0
2

0
3

0 0978 18 43 2 88� � � �� � � (17)

using � � 6 4. . As a remnant of the zero-field singular-
ity, there is for fixed field strength a smeared peak
adopting its maximum at Tp which is located below
Tc. As Tp approaches Tc, the peak becomes sharper
with decreasing Hc and evolves smoothly to the
zero-field behavior, smeared by the inhomogeneity in-
duced finite size effect, arising from the limited ex-
tent Lab c, of the homogeneous domains along the
ab-plane and c-axes. Since Tp decreases systematically
with reduced field down to Hc � 0 25. T, correspond-
ing to L / aHH cc

� ��0 512( ) � , the magnetic field
sets at and above Hc � 0 25. T the limiting length.
On the contrary, when L LH abc

� , the inhomoge-
neities set the limiting length. In this case, tp �

� �( )� �

ab ab
//L0

1 , being independent of the applied
field. Thus, the field dependence of tp is a character-
istic feature of a magnetic field induced limiting
length. The line H tcp ( ) is shown in Fig. 1,b. The
solid line is Eq. (12) with �0

2
0

2 210/ xp ab( ( ) )� � � � T,
yielding with � ab0 18 43� � . � (Eq. (17)),

xp � 2 21. , z xp p� �1 2 0 55/ .� � , (18)

which agrees well with the previous estimate
z ap � �� ��1 2 1 2312 0 57/ /. . [20].

In Fig. 2 we displayed the scaling plot
~( , )| | [ ( , ) ] | |c H t t c H T /T B tc c

� �� 
 vs. t/Hc
/1 2� deri-

ved from the data of Roulin et al. [49] shown
in Fig. 1,a. Noting that according to Eq. (13),
[ ( , ) ] | | ~( , )| | ( )c H T /T B t c H t t A F x /c c
 � �� � �� � 
,
where x t/Hc

/� 1 2�, this plot uncovers essentially the
scaling function F x� ( ), whereupon the data points
should fall on a single curve, as they apparently do,
when plotted versus x t/Hc

/� 1 2�. The solid and
dashed curves indicate the asymptotic behavior in the
limits x t/Hc

/� � 	1 2 0� (Eq. (14)), while the ar-
row marks t /H x /p c

/
p ab

/1 2
0

2
0

1 2� ��� �(( ) )� , where
the peak in the specific heat adopts its maximum
value. However, as aforementioned, it is difficult to
distinguish different models on the basis of such scal-
ing functions.

However, in view of Eqs. (15) and (16), giving the
relationship between the fluctuation contribution to
the specific heat and the correlation length longitudi-
nal to the applied field, � c ct H( , ), the magnetic field
induced finite size scenario can be verified by consid-
ering the plot | ~( , )| | ( , ) |c H t c T H /T Bc

/
c

/� � � �� 
 vs.
t, predicted to probe � c ct H( , ). In Fig. 3 we show
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| ~( , )| | ( , ) / |/ /c H t c T H T Bc c
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 vs. t derived

from the data of Roulin et al. [49] shown in Fig. 1,a.
The solid and dashed line mark the leading zero field
critical behavior in terms of | ~( , )|c H tc
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� 
 � � �| ( , ) | | |c T H /T B tc

/� � �� , with � �� � �/ 2 28. ,
consistent with the universal ratio � �c c/0 0 2 28� � � . of
the 3D-XY universality class (Eq. (5)). This confirms
that in the scaling regime considered here | ~( , )|c H tc

/� �

probes essentially the correlation length longitudinal
to the applied magnetic field, � c ct H( , ), so that
Eq. (16) applies. The rounded peak in zero field re-
veals then an inhomogeneity induced finite size effect,
while the smeared peak in finite fields, its shift and
broadening with increasing field strength discloses the
magnetic field induced finite size effect on the correla-

tion length longitudinal to the applied field. Because
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c c c
/

c
/t H c H t c T H /T B( , ) | ~( , )| | ( , ) |� � 
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field dependence of tp , where the correlation length
adopts its maximum value set by the magnetic field,
coincides with the t Hp c( ), where the specific heat
reaches its maximum value. In this context it is impor-
tant to recognize that the magnetic field dependence
of tp is a unique consequence of the magnetic field in-
duced finite size effect. Indeed, when inhomogeneities
set the limiting length then t /Lp ab ab

/� �( )� �

0
1 ,

which is independent of the applied field.
When the magnetic field induced finite size effect

scenario is correct, the occurrence of the effect is not
restricted to temperatures below Tc. It is particularly
dramatic at Tc, where in a homogeneous system in zero
field the correlation lengths are infinite. In an applied
field the scaling form (10) yields the prediction
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where we used the definition (8) for the limiting
magnetic length LHc

. In Fig. 3,b we displayed
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c c c
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/H t c H t c H T /T B( , ) | ~( , )| | ( , ) |� � � � �0 0

vs. Hc. The consistency with the solid line,
which is Eq. (19) in the form �c cH t( , )� �0
� � � � � �| ~( , )| | ( , ) | . •c H t c H T /T B Hc

/
c c c

/
c

/0 321079 1 2� � � � ,
reveals again that an applied magnetic field leads to a
finite size effect in the correlation length longitudinal
to the field.

For magnetic fields applied parallel to the a-axis,
the transverse correlation lengths �b and � c are, ac-

cording to Eq. (8), bounded by � �a b HL
a

� � � . When

the magnetic field induced finite size scenario holds
true, the correlation length longitudinal to the ap-
plied field, � a aH t( , ), should be bounded as well. In
analogy to Eq. (10) the longitudinal correlation
length adopts then the scaling form
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with the limiting behavior given in Eq. (11). Thus,
the divergence of the correlation length is removed
and � a aH t� ( , ) adopts at T Hp a( ) � Tc a maximum,
yielding the line
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Furthermore, in analogy to Eq. (16), the relation
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between the longitudinal correlation length and the
specific heat should hold in the limits x � 0 and
x � 	 �. In Fig. 4,a we depicted | ~( , )|c H tab

/� � �

� 
| ( , ) |c H T /T Bab
/� � vs. t derived from the data of

Roulin et al. [49]. The solid and dashed line mark the
leading zero field critical behavior in terms of
| ~( , )| | ( , ) |c H t c T H /T Bc

/
c

/� � � �� 
 � � � �| |t �, with

� �� � �/ 2 28. , consistent with the universal ratio

� �ab ab/0 0 2 28� � � . of the 3D-XY universality class

(Eq. (5)). This consistency confirms again that in the
scaling regime considered here | ~( , )|c H tab

/� � probes

the correlation length � ab abt H( , ) longitudinal to the
applied field. The rounded peak in zero field reveals
an inhomogeneity induced finite size effect, while the
smeared peak in finite fields, its shift and broadening

with increasing field strength disclose the magnetic
field induced finite size effect in � ab ct H( , ). Indeed, it
is seen from Fig. 4,b that the field dependence of tp
where the correlation length � ab ct H( , ) adopts its
maximum value, set by the magnetic field, is consis-
tent with t Hp ab

/� 
0 0034 1 2. � which is Eq. (21) with

[( ) ]x /p ab c
/2

0 0 0
1 2� �� �� � �� 0 0034. T, resulting from the

� ab c, 0
� given by Eq. (17) and xp � 2 21. (Eq. (18)).

To summarize our result for an anisotropic type-II
superconductor, we have shown that near the zero
field transition temperature superconductivity is in a
magnetic field subjected to a field induced finite size
effect. The crucial ingredient for a finite size effect is
an energy gap in the excitation spectrum of fluctua-
tions. In the present case it is the discrete set of Lan-
dau levels. Indeed, there is the formal analogy with
the Landau levels of a charged particle moving in cir-
cular orbits in the plane perpendicular to the applied
field at the cyclotron frequency. As a consequence, the
fluctuations which are transverse to the field are stiff
and have a length scale L /HH � �0 . Hence, the
fluctuations of a bulk type-II superconductor become
one dimensional and are longitudinal to the applied
field, as noted by Lee and Shenoy [59]. Because fluc-
tuations become more important with reduced
dimensionality, one expects then that the interaction
of these fluctuations remove the mean-field transition
at T Hc c2( ), because thermal fluctuations destroy the
ordered phase in one dimensional systems with
short-range interactions. The absence of this transition
is further supported by calculations treating the fluc-
tuations within the Hartree approximation [39,40,
54,60], and generalizations thereof [41,61,62]. They
suggest that the correlation length longitudinal to the
applied field remains bounded as well. Invoking the
scaling theory of critical phenomena we confirmed
this prediction. We have shown that the specific heat
data of Roulin et al. [51] clearly reveals a magnetic
field induced finite size effect in the correlation length
longitudinal to the applied field. Accordingly, there is
no evidence for a phase transition line T Hc2( ) near the
zero field transition temperature Tc.

I would like to thank K.A. M�ller for stimulating
discussions on this and related subjects.
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