14,185 research outputs found

    Spontaneous Raman scattering for simultaneous measurements of in-cylinder species

    Get PDF
    A technique for multi-species mole fraction measurement in internal combustion engines is described. The technique is based on the spontaneous Raman scattering. It can simultaneously provide the mole fractions of several species of N-2, O-2, H2O, CO2 and fuel. Using the system, simultaneous measurement of air/fuel ratio and burnt residual gas are carried out during the mixture process in a Controlled Auto Ignition (CAI) combustion engine. The accuracy and consistency of the measured results were confirmed by the measured air fuel ratio using an exhaust gas analyzer and independently calculated mole fraction values. Measurement of species mole fractions during combustion process has also been demonstrated. It shows that the SRS can provide valuable data on this process in a CAI combustion engine

    Structure of CdTe/ZnTe superlattices

    Get PDF
    The structure of CdTe/ZnTe superlattices has been analyzed through θ/2θ x‐ray diffraction, photoluminescence, and in situ reflection high‐energy electron diffraction (RHEED) measurements. Samples are found to break away from Cd_(x)Zn_(1−x)Te buffer layers as a consequence of the 6% lattice mismatch in this system. However, defect densities in these superlattices are seen to drop dramatically away from the buffer layer interface, accounting for the intense photoluminescence and high‐average strain fields seen in each of our samples. Observed variations in residual strains suggest that growth conditions play a role in forming misfit defects. This could explain discrepancies with calculated values of critical thickness based on models which neglect growth conditions. Photoluminescence spectra reveal that layer‐to‐layer growth proceeded with single monolayer uniformity, suggesting highly reproducible growth. Our results give hope for relatively defect‐free Cd_(x)Zn_(1−x)Te/Cd_(y)Zn_(1−y)Te superlattices with the potential for applications to optoelectronics offered by intense visible light emitters

    Testing for entanglement with periodic coarse-graining

    Get PDF
    Continuous variables systems find valuable applications in quantum information processing. To deal with an infinite-dimensional Hilbert space, one in general has to handle large numbers of discretized measurements in tasks such as entanglement detection. Here we employ the continuous transverse spatial variables of photon pairs to experimentally demonstrate novel entanglement criteria based on a periodic structure of coarse-grained measurements. The periodization of the measurements allows for an efficient evaluation of entanglement using spatial masks acting as mode analyzers over the entire transverse field distribution of the photons and without the need to reconstruct the probability densities of the conjugate continuous variables. Our experimental results demonstrate the utility of the derived criteria with a success rate in entanglement detection of 60%\sim60\% relative to 73447344 studied cases.Comment: V1: revtex4, 10 pages, 4 figures + supp. material (4 pages, 1 figure) V2: Substantial revisions implemented both in theory and experimental data analysi

    Noise-Source Separation Using Internal and Far-Field Sensors for a Full-Scale Turbofan Engine

    Get PDF
    Noise-source separation techniques for the extraction of the sub-dominant combustion noise from the total noise signatures obtained in static-engine tests are described. Three methods are applied to data from a static, full-scale engine test. Both 1/3-octave and narrow-band results are discussed. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP). A new additional phase-angle-based discriminator for the three-signal method is also introduced

    Universal properties of boundary and interface charges in continuum models of one-dimensional insulators

    Get PDF
    We study single-channel continuum models of one-dimensional insulators induced by periodic potential modulations which are either terminated by a hard wall (the boundary model) or feature a single region of dislocations and/or impurity potentials breaking translational invariance (the interface model). We investigate the universal properties of excess charges accumulated near the boundary and the interface, respectively. We find a rigorous analytic proof for the earlier observed linear dependence of the boundary charge on the phase of the periodic potential modulation as well as extend these results to the interface model. The linear dependence on the phase shows a universal value for the slope and is intersected by discontinuous jumps by plus or minus one electron charge at the phase points where localized states enter or leave a band of extended states. Both contributions add up such that the periodicity of the excess charge in the phase over a 2π cycle is maintained. While in the boundary model this property is usually associated with the bulk-boundary correspondence, in the interface model a correspondence of scattering state and localized state contributions to the total interface charge are unveiled on the basis of the so-called nearsightedness principle

    Amplitude equations and pattern selection in Faraday waves

    Full text link
    We present a systematic nonlinear theory of pattern selection for parametric surface waves (Faraday waves), not restricted to fluids of low viscosity. A standing wave amplitude equation is derived from the Navier-Stokes equations that is of gradient form. The associated Lyapunov function is calculated for different regular patterns to determine the selected pattern near threshold. For fluids of large viscosity, the selected wave pattern consists of parallel stripes. At lower viscosity, patterns of square symmetry are obtained in the capillary regime (large frequencies). At lower frequencies (the mixed gravity-capillary regime), a sequence of six-fold (hexagonal), eight-fold, ... patterns are predicted. The regions of stability of the various patterns are in quantitative agreement with recent experiments conducted in large aspect ratio systems.Comment: 12 pages, 1 figure, Revte

    Perspectives on formation and properties of semiconductor interfaces

    Get PDF
    Recent progress in experimentally and theoretically understanding interfaces at the atomic level suggest that ultimate electronic systems may one day be fabricated on a single integrated chip. If such elements as Si VLSI processors, GaAs/AIAs integrated optoelectronic 10 devices, II-VI superlattice visible displays and high speed III-V processors are to be integrated, interface formation and in situ processing will be required at a level of sophistication well beyond what is available today. In this paper, we review recent developments in interface formation by both MOCVD and MBE. To illustrate the power of our diagnostic methods, the details of epitaxial interface formation on an atomic scale are reviewed for lattice matched systems (Ge/GaAs/AIAs) and epitaxial silicides (Ni/Si2/Si) as well as oxidation of silicon to form Si/SiO2 interfaces. New developments in using lattice mismatched superlattices with strained layers are discussed for CdTe/ZnTe. Additional complications of growing compound semiconductors on elemental substrates (e.g., anti-phase domains) are discussed for GaAs growth on Si(l00)

    Too Much SALT? The Nuanced Impact of the State and Local Tax Deduction Cap on Pass-Through Business Taxpayers

    Get PDF
    Perhaps the most controversial provision of the Tax Cuts and Jobs Act of 2017 is the state and local tax deduction limitation (or SALT cap), partic¬ularly with respect to how the cap impacts pass-through entities in high-tax states. This particular provision of the tax law has been criticized by opponents as deliberately punitive to small businesses in blue states, while proponents maintain that eliminating the SALT cap would primar¬ily benefit high income taxpayers. Politicians from blue states have called for the repeal of the SALT cap, and some states have enacted various workarounds with questionable prospects of success. Still, many taxpay¬ers will not benefit from a SALT deduction irrespective of the SALT cap, particularly taxpayers that either take the standard deduction or are subject to the alternative minimum tax (AMT). We examine the developing law around the SALT cap and provide descriptive empirical evidence of its disparate impact on closely held business taxpayers. Consistent with prior economics literature, we find that the impact is indeed most pro¬nounced among high-income taxpayers in blue states. However, we note that the impact is substantially less than the furor over the limitation would suggest because many high-income taxpayers are subject to the AMT and so are not significantly affected by the limitation. These findings suggest two underemphasized points. First, the imposition of the SALT cap was not the drastic financial hit to blue state taxpayers that policy makers and commentators have suggested. Second, with a new adminis¬tration that favors eliminating the SALT cap, Congress could consider whether the repeal of the cap alone is enough because further changes would be needed to return the SALT deduction to its earlier prominence

    There's more to life than O2_2: Simulating the detectability of a range of molecules for ground-based high-resolution spectroscopy of transiting terrestrial exoplanets

    Full text link
    Within the next decade, atmospheric O2_2 on Earth-like M dwarf planets may be accessible with visible--near-infrared, high spectral resolution extremely large ground-based telescope (ELT) instruments. However, the prospects for using ELTs to detect environmental properties that provide context for O2_2 have not been thoroughly explored. Additional molecules may help indicate planetary habitability, rule out abiotically generated O2_2, or reveal alternative biosignatures. To understand the accessibility of environmental context using ELT spectra, we simulate high-resolution transit transmission spectra of previously-generated evolved terrestrial atmospheres. We consider inhabited pre-industrial and Archean Earth-like atmospheres, and lifeless worlds with abiotic O2_2 buildup from CO2_2 and H2_2O photolysis. All atmospheres are self-consistent with M2V--M8V dwarf host stars. Our simulations include explicit treatment of systematic and telluric effects to model high-resolution spectra for GMT, TMT, and E-ELT configurations for systems 5 and 12 pc from Earth. Using the cross-correlation technique, we determine the detectability of major species in these atmospheres: O2_2, O3_3, CH4_4, CO2_2, CO, H2_2O, and C2_2H6_6. Our results suggest that CH4_4 and CO2_2 are the most accessible molecules for terrestrial planets transiting a range of M dwarf hosts using an E-ELT, TMT, or GMT sized telescope, and that the O2_2 NIR and H2_2O 0.9 μ\mum bands may also be accessible with more observation time. Although this technique still faces considerable challenges, the ELTs will provide access to the atmospheres of terrestrial planets transiting earlier-type M-dwarf hosts that may not be possible using JWST.Comment: Accepted for publication in The Planetary Science Journa

    Perspectives on formation and properties of semiconductor interfaces

    Get PDF
    Recent progress in experimentally and theoretically understanding interfaces at the atomic level suggest that ultimate electronic systems may one day be fabricated on a single integrated chip. If such elements as Si VLSI processors, GaAs/AIAs integrated optoelectronic 10 devices, II-VI superlattice visible displays and high speed III-V processors are to be integrated, interface formation and in situ processing will be required at a level of sophistication well beyond what is available today. In this paper, we review recent developments in interface formation by both MOCVD and MBE. To illustrate the power of our diagnostic methods, the details of epitaxial interface formation on an atomic scale are reviewed for lattice matched systems (Ge/GaAs/AIAs) and epitaxial silicides (Ni/Si2/Si) as well as oxidation of silicon to form Si/SiO2 interfaces. New developments in using lattice mismatched superlattices with strained layers are discussed for CdTe/ZnTe. Additional complications of growing compound semiconductors on elemental substrates (e.g., anti-phase domains) are discussed for GaAs growth on Si(l00)
    corecore