22,865 research outputs found
Research instrumentation for tornado electromagnetics emissions detection
Instrumentation for receiving, processing, and recording HF/VHF electromagnetic emissions from severe weather activity is described. Both airborne and ground-based instrumentation units are described on system and subsystem levels. Design considerations, design decisions, and the rationale behind the decisions are given. Performance characteristics are summarized and recommendations for improvements are given. The objectives, procedures, and test results of the following are presented: (1) airborne flight test in the Midwest U.S.A. (Spring 1975) and at the Kennedy Space Center, Florida (Summer 1975); (2) ground-based data collected in North Georgia (Summer/Fall 1975); and (3) airborne flight test in the Midwest (late Spring 1976) and at the Kennedy Space Center, Florida (Summer 1976). The Midwest tests concentrated on severe weather with tornadic activity; the Florida and Georgia tests monitored air mass convective thunderstorm characteristics. Supporting ground truth data from weather radars and sferics DF nets are described
Increases in salience of ethnic identity at work: the roles of ethnic assignation and ethnic identification
To better understand how ethnicity is actually experienced within organisations, we examined reported increases in ethnic identity salience at work and responses to such increases. Thirty British black Caribbean graduate employees were interviewed about how and when they experienced their ethnic identity at work. The findings demonstrated that increased salience in ethnic identity was experienced in two key ways: through ‘ethnic assignation’ (a ‘push’ towards ethnic identity) and ‘ethnic identification’ (a ‘pull’ towards ethnic identity). We explore how and when ethnic assignation and ethnic identification occur at work, and their relevance to how workplaces are experienced by this group of minority ethnic employees. The findings suggest the need for further research attention to the dynamic and episodic nature of social identity, including ethnic identity, within organisations, and to the impact of such increases in salience of social identities on behaviour at work
The structure of lightning flashes HF-UHF: 12 September 1975, Atlanta, Georgia
Simultaneous measurement of sferics at 3, 30, 139, and 295 MHz were made during thunderstorms. Wideband electronics and an analogue tape recorder continuously recorded the radiation from lightning with about 300 kHz of bandwidth. The data were obtained during the passage of a cold front. Flashing rate, burst rate and the structure of individual flashes were recorded. The record of a typical flash begins with a sudden burst of closely spaced pulses whose temporal structure is typical of the stepped leader, and ends in a large pulse suggestive of a first return stroke. The remainder of the flash consists of a sequence of pulses of varying amplitude separated by quiet periods of the order of milliseconds. The shape of these pulses and the temporal structure suggest that the first few large pulses are return strokes. Other discharges begin with widely spaced discrete pulses and resemble the preceding discharge less the leader and return stroke phase. The radiation exhibits a similar structure, at each of the frequencies monitored
Sand as Maxwell's demon
We consider a dilute gas of granular material inside a box, kept in a
stationary state by shaking. A wall separates the box into two identical
compartments, save for a small hole at some finite height . As the gas is
cooled, a second order phase transition occurs, in which the particles
preferentially occupy one side of the box. We develop a quantitative theory of
this clustering phenomenon and find good agreement with numerical simulations
Cold Flow Determination of the Internal Flow Environment Around the Submerged TVC Nozzle for the Space Shuttle SRM
A series of subscale cold flow tests was performed to quantify the gas flow characteristics at the aft end of the Space Shuttle Solid Rocket Motor. This information was used to support the analyses of the redesigned nozzle/case joint. A portion of the thermal loads at the joint are due to the circumferential velocities and pressure gradients caused primarily by the gimbaling of the submerged nose TVC nozzle. When the nozzle centerline is vectored with respect to the motor centerline, asymmetries are set up in the flow field under the submerged nozzle and immediately adjacent to the nozzle/case joint. Specific program objectives included: determination of the effects of nozzle gimbal angle and propellant geometry on the circumferential flow field; measurement of the static pressure and gas velocities in the vicinity of the nozzle/case joint; use of scaling laws to apply the subscale cold flow data to the full scale SRM; and generation of data for use in validation of 3-D computational fluid dynamic, CFD, models of the SRM flow field. These tests were conducted in the NASA Marshall Space Flight Center Airflow Facility with a 7.5 percent scale model of the aft segment of the SRM. Static and dynamic pressures were measured in the model to quantify the flow field. Oil flow data was also acquired to obtain qualitative visual descriptions of the flow field. Nozzle gimbal angles of 0, 3.5, and 7 deg were used with propellant grain configurations corresponding to motor burn times of 0, 9, 19, and 114 seconds. This experimental program was successful in generating velocity and pressure gradient data for the flow field around the submerged nose nozzle of the Space Shuttle SRM at various burn times and gimbal angles. The nature of the flow field adjacent to the nozzle/case joint was determined with oil droplet streaks, and the velocity and pressure gradients were quantified with pitot probes and wall static pressure measurements. The data was applied to the full scale SRM thru a scaling analysis and the results compared well with the 3-D computational fluid dynamics computer model
Electromagnetic Moments of the Baryon Decuplet
We compute the leading contributions to the magnetic dipole and electric
quadrupole moments of the baryon decuplet in chiral perturbation theory. The
measured value for the magnetic moment of the is used to determine
the local counterterm for the magnetic moments. We compare the chiral
perturbation theory predictions for the magnetic moments of the decuplet with
those of the baryon octet and find reasonable agreement with the predictions of
the large-- limit of QCD. The leading contribution to the quadrupole
moment of the and other members of the decuplet comes from one--loop
graphs. The pionic contribution is shown to be proportional to (and so
will not contribute to the quadrupole moment of nuclei), while the
contribution from kaons has both isovector and isoscalar components. The chiral
logarithmic enhancement of both pion and kaon loops has a coefficient that
vanishes in the limit. The third allowed moment, the magnetic octupole,
is shown to be dominated by a local counterterm with corrections arising at two
loops. We briefly mention the strange counterparts of these moments.Comment: Uses harvmac.tex, 15 pages with 3 PostScript figures packed using
uufiles. UCSD/PTH 93-22, QUSTH-93-05, Duke-TH-93-5
Giant planets around two intermediate-mass evolved stars and confirmation of the planetary nature of HIP67851 c
Precision radial velocities are required to discover and characterize planets
orbiting nearby stars. Optical and near infrared spectra that exhibit many
hundreds of absorption lines can allow the m/s precision levels required for
such work. However, this means that studies have generally focused on
solar-type dwarf stars. After the main-sequence, intermediate-mass stars
(former A-F stars) expand and rotate slower than their progenitors, thus
thousands of narrow absorption lines appear in the optical region, permitting
the search for planetary Doppler signals in the data for these types of stars.
We present the discovery of two giant planets around the intermediate-mass
evolved star HIP65891 and HIP107773. The best Keplerian fit to the HIP65891 and
HIP107773 radial velocities leads to the following orbital parameters: P=1084.5
d; msin = 6.0 M; =0.13 and P=144.3 d; msin = 2.0
M; =0.09, respectively. In addition, we confirm the planetary nature
of the outer object orbiting the giant star HIP67851. The orbital parameters of
HIP67851c are: P=2131.8 d, msin = 6.0 M and =0.17. With
masses of 2.5 M and 2.4 M HIP65891 and HIP107773 are two of the
most massive stars known to host planets. Additionally, HIP67851 is one of five
giant stars that are known to host a planetary system having a close-in planet
( 0.7 AU). Based on the evolutionary states of those five stars, we
conclude that close-in planets do exist in multiple systems around subgiants
and slightly evolved giants stars, but probably they are subsequently destroyed
by the stellar envelope during the ascent of the red giant branch phase. As a
consequence, planetary systems with close-in objects are not found around
horizontal branch stars.Comment: Accepted for publication in A&
- …