359 research outputs found
On the optimality of individual entangling-probe attacks against BB84 quantum key distribution
It is shown that an existing method to study ideal individual attacks on the
BB84 QKD protocol using error discard can be adapted to reconciliation with
error correction, and that an optimal attack can be explicitly found. Moreover,
this attack fills Luetkenhaus bound, independently of whether error positions
are leaked to Eve, proving that it is tight. In addition, we clarify why the
existence of such optimal attacks is not in contradiction with the established
``old-style'' theory of BB84 individual attacks, as incorrectly suggested
recently in a news feature.Comment: 12 pages, 3 figure
Superdeformation and hyperdeformation in the Cd nucleus
The superdeformation and hyperdeformation in Cd have been studied for
the first time within the framework of the fully self-consistent cranked mean
field theory, namely, cranked relativistic mean field theory. The structure of
observed superdeformed bands 1 and 2 have been analyzed in detail. The bumps
seen in their dynamic moments of inertia are explained as arising from unpaired
band crossings. This is contrary to an explanation given earlier within the
framework of projected shell model. It was also concluded that this nucleus is
not doubly magic SD nucleus
Photon bunching in parametric down-conversion with continuous wave excitation
The first direct measurement of photon bunching (g2 correlation function) in
one output arm of a spontaneous-parametric-down-conversion source operated with
a continuous pump laser in the single-photon regime is demonstrated. The result
is in agreement with the statistics of a thermal field of the same coherence
length, and shows the feasibility of investigating photon statistics with
compact cw-pumped sources. Implications for entanglement-based quantum
cryptography are discussed.Comment: 7 pages, 4 figures, expanded introduction and experimental details
added. Accepted for publication in Phys.Rev.
Universal conductance enhancement and reduction of the two-orbital Kondo effect
We investigate theoretically the linear and nonlinear conductance through a
nanostructure with two-fold degenerate single levels, corresponding to the
transport through nanostructures such as a carbon nanotube, or double dot
systems with capacitive interaction. It is shown that the presence of the
interaction asymmetry between orbits/dots affects significantly the profile of
the linear conductance at finite temperature, and, of the nonlinear
conductance, particularly around half-filling, where the two-particle Kondo
effect occurs. Within the range of experimentally feasible parameters, the
SU(4) universal behavior is suggested, and comparison with relevant experiments
is made.Comment: 10 pages, 16 figure
DESC9115 Lab Report 1
The implementation of the Vibrato and Flanger effect by Oscar GonzalezArchitecture & Allied Art
A one-dimensional lattice model for a quantum mechanical free particle
Two types of particles, A and B with their corresponding antiparticles, are
defined in a one dimensional cyclic lattice with an odd number of sites. In
each step of time evolution, each particle acts as a source for the
polarization field of the other type of particle with nonlocal action but with
an effect decreasing with the distance: A -->...\bar{B} B \bar{B} B \bar{B} ...
; B --> A \bar{A} A \bar{A} A ... . It is shown that the combined distribution
of these particles obeys the time evolution of a free particle as given by
quantum mechanics.Comment: 8 pages. Revte
Direct generation of photon triplets using cascaded photon-pair sources
Non-classical states of light, such as entangled photon pairs and number
states, are essential for fundamental tests of quantum mechanics and optical
quantum technologies. The most widespread technique for creating these quantum
resources is the spontaneous parametric down-conversion (SPDC) of laser light
into photon pairs. Conservation of energy and momentum in this process, known
as phase-matching, gives rise to strong correlations which are used to produce
two-photon entanglement in various degrees of freedom. It has been a
longstanding goal of the quantum optics community to realise a source that can
produce analogous correlations in photon triplets, but of the many approaches
considered, none have been technically feasible. In this paper we report the
observation of photon triplets generated by cascaded down-conversion. Here each
triplet originates from a single pump photon, and therefore quantum
correlations will extend over all three photons in a way not achievable with
independently created photon pairs. We expect our photon-triplet source to open
up new avenues of quantum optics and become an important tool in quantum
technologies. Our source will allow experimental interrogation of novel quantum
correlations, the post-selection free generation of tripartite entanglement
without post- selection and the generation of heralded entangled-photon pairs
suitable for linear optical quantum computing. Two of the triplet photons have
a wavelength matched for optimal transmission in optical fibres, ideally suited
for three-party quantum communication. Furthermore, our results open
interesting regimes of non-linear optics, as we observe spontaneous
down-conversion pumped by single photons, an interaction also highly relevant
to optical quantum computing.Comment: 7 pages, 3 figures, 1 table; accepted by Natur
Triaxial Superdeformation in 163 Lu
Abstract High-spin states in 163 Lu have been investigated using the Euroball spectrometer array. The previously known superdeformed band has been extended at low and high energies, and its connection to the normal-deformed states has been established. From its decay the mixing amplitude and interaction strength between superdeformed and normal states are derived. In addition, a new band with a similar dynamic moment of inertia has been found. The experimental results are compared to cranking calculations which suggest that the superdeformed bands in this mass region correspond to shapes with a pronounced triaxiality ( γ ≈±20°)
- …