358 research outputs found

    On the optimality of individual entangling-probe attacks against BB84 quantum key distribution

    Full text link
    It is shown that an existing method to study ideal individual attacks on the BB84 QKD protocol using error discard can be adapted to reconciliation with error correction, and that an optimal attack can be explicitly found. Moreover, this attack fills Luetkenhaus bound, independently of whether error positions are leaked to Eve, proving that it is tight. In addition, we clarify why the existence of such optimal attacks is not in contradiction with the established ``old-style'' theory of BB84 individual attacks, as incorrectly suggested recently in a news feature.Comment: 12 pages, 3 figure

    Superdeformation and hyperdeformation in the 108^{108}Cd nucleus

    Full text link
    The superdeformation and hyperdeformation in 108^{108}Cd have been studied for the first time within the framework of the fully self-consistent cranked mean field theory, namely, cranked relativistic mean field theory. The structure of observed superdeformed bands 1 and 2 have been analyzed in detail. The bumps seen in their dynamic moments of inertia are explained as arising from unpaired band crossings. This is contrary to an explanation given earlier within the framework of projected shell model. It was also concluded that this nucleus is not doubly magic SD nucleus

    Photon bunching in parametric down-conversion with continuous wave excitation

    Full text link
    The first direct measurement of photon bunching (g2 correlation function) in one output arm of a spontaneous-parametric-down-conversion source operated with a continuous pump laser in the single-photon regime is demonstrated. The result is in agreement with the statistics of a thermal field of the same coherence length, and shows the feasibility of investigating photon statistics with compact cw-pumped sources. Implications for entanglement-based quantum cryptography are discussed.Comment: 7 pages, 4 figures, expanded introduction and experimental details added. Accepted for publication in Phys.Rev.

    Universal conductance enhancement and reduction of the two-orbital Kondo effect

    Get PDF
    We investigate theoretically the linear and nonlinear conductance through a nanostructure with two-fold degenerate single levels, corresponding to the transport through nanostructures such as a carbon nanotube, or double dot systems with capacitive interaction. It is shown that the presence of the interaction asymmetry between orbits/dots affects significantly the profile of the linear conductance at finite temperature, and, of the nonlinear conductance, particularly around half-filling, where the two-particle Kondo effect occurs. Within the range of experimentally feasible parameters, the SU(4) universal behavior is suggested, and comparison with relevant experiments is made.Comment: 10 pages, 16 figure

    DESC9115 Lab Report 1

    Get PDF
    The implementation of the Vibrato and Flanger effect by Oscar GonzalezArchitecture & Allied Art

    A one-dimensional lattice model for a quantum mechanical free particle

    Get PDF
    Two types of particles, A and B with their corresponding antiparticles, are defined in a one dimensional cyclic lattice with an odd number of sites. In each step of time evolution, each particle acts as a source for the polarization field of the other type of particle with nonlocal action but with an effect decreasing with the distance: A -->...\bar{B} B \bar{B} B \bar{B} ... ; B --> A \bar{A} A \bar{A} A ... . It is shown that the combined distribution of these particles obeys the time evolution of a free particle as given by quantum mechanics.Comment: 8 pages. Revte

    Direct generation of photon triplets using cascaded photon-pair sources

    Full text link
    Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is the spontaneous parametric down-conversion (SPDC) of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations which are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal of the quantum optics community to realise a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none have been technically feasible. In this paper we report the observation of photon triplets generated by cascaded down-conversion. Here each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. We expect our photon-triplet source to open up new avenues of quantum optics and become an important tool in quantum technologies. Our source will allow experimental interrogation of novel quantum correlations, the post-selection free generation of tripartite entanglement without post- selection and the generation of heralded entangled-photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, ideally suited for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.Comment: 7 pages, 3 figures, 1 table; accepted by Natur

    Triaxial Superdeformation in 163 Lu

    Get PDF
    Abstract High-spin states in 163 Lu have been investigated using the Euroball spectrometer array. The previously known superdeformed band has been extended at low and high energies, and its connection to the normal-deformed states has been established. From its decay the mixing amplitude and interaction strength between superdeformed and normal states are derived. In addition, a new band with a similar dynamic moment of inertia has been found. The experimental results are compared to cranking calculations which suggest that the superdeformed bands in this mass region correspond to shapes with a pronounced triaxiality ( γ ≈±20°)
    corecore