10 research outputs found
Simulating Microdosimetry in a Virtual Hepatic Lobule
The liver plays a key role in removing harmful chemicals from the body and is therefore often the first tissue to suffer potentially adverse consequences. To protect public health it is necessary to quantitatively estimate the risk of long-term low dose exposure to environmental pollutants. Animal testing is the primary tool for extrapolating human risk but it is fraught with uncertainty, necessitating novel alternative approaches. Our goal is to integrate in vitro liver experiments with agent-based cellular models to simulate a spatially extended hepatic lobule. Here we describe a graphical model of the sinusoidal network that efficiently simulates portal to centrilobular mass transfer in the hepatic lobule. We analyzed the effects of vascular topology and metabolism on the cell-level distribution following oral exposure to chemicals. The spatial distribution of metabolically inactive chemicals was similar across different vascular networks and a baseline well-mixed compartment. When chemicals were rapidly metabolized, concentration heterogeneity of the parent compound increased across the vascular network. As a result, our spatially extended lobule generated greater variability in dose-dependent cellular responses, in this case apoptosis, than were observed in the classical well-mixed liver or in a parallel tubes model. The mass-balanced graphical approach to modeling the hepatic lobule is computationally efficient for simulating long-term exposure, modular for incorporating complex cellular interactions, and flexible for dealing with evolving tissues
Adverse outcome pathways: Opportunities, limitations and open questions
Adverse outcome pathways (AOPs) are a recent toxicological construct that connects, in a formalized, transparent and quality-controlled way, mechanistic information to apical endpoints for regulatory purposes. AOP links a molecular initiating event (MIE) to the adverse outcome (AO) via key events (KE), in a way specified by key event relationships (KER). Although this approach to formalize mechanistic toxicological information only started in 2010, over 200 AOPs have already been established. At this stage, new requirements arise, such as the need for harmonization and re-assessment, for continuous updating, as well as for alerting about pitfalls, misuses and limits of applicability. In this review, the history of the AOP concept and its most prominent strengths are discussed, including the advantages of a formalized approach, the systematic collection of weight of evidence, the linkage of mechanisms to apical end points, the examination of the plausibility of epidemiological data, the identification of critical knowledge gaps and the design of mechanistic test methods. To prepare the ground for a broadened and appropriate use of AOPs, some widespread misconceptions are explained. Moreover, potential weaknesses and shortcomings of the current AOP rule set are addressed (1) to facilitate the discussion on its further evolution and (2) to better define appropriate vs. less suitable application areas. Exemplary toxicological studies are presented to discuss the linearity assumptions of AOP, the management of event modifiers and compensatory mechanisms, and whether a separation of toxicodynamics from toxicokinetics including metabolism is possible in the framework of pathway plasticity. Suggestions on how to compromise between different needs of AOP stakeholders have been added. A clear definition of open questions and limitations is provided to encourage further progress in the field
Nonlinear modelling of cancer: bridging the gap between cells and tumours
Despite major scientific, medical and technological advances over the last few decades, a cure for cancer remains elusive. The disease initiation is complex, and including initiation and avascular growth, onset of hypoxia and acidosis due to accumulation of cells beyond normal physiological conditions, inducement of angiogenesis from the surrounding vasculature, tumour vascularization and further growth, and invasion of surrounding tissue and metastasis. Although the focus historically has been to study these events through experimental and clinical observations, mathematical modelling and simulation that enable analysis at multiple time and spatial scales have also complemented these efforts. Here, we provide an overview of this multiscale modelling focusing on the growth phase of tumours and bypassing the initial stage of tumourigenesis. While we briefly review discrete modelling, our focus is on the continuum approach. We limit the scope further by considering models of tumour progression that do not distinguish tumour cells by their age. We also do not consider immune system interactions nor do we describe models of therapy. We do discuss hybrid-modelling frameworks, where the tumour tissue is modelled using both discrete (cell-scale) and continuum (tumour-scale) elements, thus connecting the micrometre to the centimetre tumour scale. We review recent examples that incorporate experimental data into model parameters. We show that recent mathematical modelling predicts that transport limitations of cell nutrients, oxygen and growth factors may result in cell death that leads to morphological instability, providing a mechanism for invasion via tumour fingering and fragmentation. These conditions induce selection pressure for cell survivability, and may lead to additional genetic mutations. Mathematical modelling further shows that parameters that control the tumour mass shape also control its ability to invade. Thus, tumour morphology may serve as a predictor of invasiveness and treatment prognosis