26 research outputs found

    RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease

    Get PDF
    To facilitate precision medicine and whole genome annotation, we developed a machine learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of over 650,000 intronic and exonic variants reveals widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations alter splicing nine times more often than common variants, and missense exonic disease mutations that least impact protein function are five times more likely to alter splicing than others. Tens of thousands of disease-causing mutations are detected, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole genome sequencing of individuals with autism reveals mis-spliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine

    Genome Analysis Reveals Interplay between 5′UTR Introns and Nuclear mRNA Export for Secretory and Mitochondrial Genes

    Get PDF
    In higher eukaryotes, messenger RNAs (mRNAs) are exported from the nucleus to the cytoplasm via factors deposited near the 5′ end of the transcript during splicing. The signal sequence coding region (SSCR) can support an alternative mRNA export (ALREX) pathway that does not require splicing. However, most SSCR–containing genes also have introns, so the interplay between these export mechanisms remains unclear. Here we support a model in which the furthest upstream element in a given transcript, be it an intron or an ALREX–promoting SSCR, dictates the mRNA export pathway used. We also experimentally demonstrate that nuclear-encoded mitochondrial genes can use the ALREX pathway. Thus, ALREX can also be supported by nucleotide signals within mitochondrial-targeting sequence coding regions (MSCRs). Finally, we identified and experimentally verified novel motifs associated with the ALREX pathway that are shared by both SSCRs and MSCRs. Our results show strong correlation between 5′ untranslated region (5′UTR) intron presence/absence and sequence features at the beginning of the coding region. They also suggest that genes encoding secretory and mitochondrial proteins share a common regulatory mechanism at the level of mRNA export

    Decoding a cancer-relevant splicing decision in the RON proto-oncogene using high-throughput mutagenesis

    Get PDF
    Mutations causing aberrant splicing are frequently implicated in human diseases including cancer. Here, we establish a high-throughput screen of randomly mutated minigenes to decode the cis-regulatory landscape that determines alternative splicing of exon 11 in the proto-oncogene MST1R (RON). Mathematical modelling of splicing kinetics enables us to identify more than 1000 mutations affecting RON exon 11 skipping, which corresponds to the pathological isoform RON Delta 165. Importantly, the effects correlate with RON alternative splicing in cancer patients bearing the same mutations. Moreover, we highlight heterogeneous nuclear ribonucleoprotein H (HNRNPH) as a key regulator of RON splicing in healthy tissues and cancer. Using iCLIP and synergy analysis, we pinpoint the functionally most relevant HNRNPH binding sites and demonstrate how cooperative HNRNPH binding facilitates a splicing switch of RON exon 11. Our results thereby offer insights into splicing regulation and the impact of mutations on alternative splicing in cancer.Institute of Molecular Biology Core Facilities; DFG [ZA 881/2-1, KO 4566/4-1, LE 3473/2-1]; LOEWE program Ubiquitin Networks (Ub-Net) of the State of Hesse (Germany); Deutsche Forschungsgemeinschaft [SFB902 B13]; EMBO [3057]; Fundacao para a Ciencia e a Tecnologia, Portugal (FCT Investigator Starting Grant) [IF/00595/2014]; German Federal Ministry of Research (BMBF; e:bio junior group program) [FKZ: 0316196]; Boehringer Ingelheim Foundation; [INST 47/870-1 FUGG

    The evolutionary landscape of alternative splicing in vertebrate species.

    No full text
    How species with similar repertoires of protein-coding genes differ so markedly at the phenotypic level is poorly understood. By comparing organ transcriptomes from vertebrate species spanning ~350 million years of evolution, we observed significant differences in alternative splicing complexity between vertebrate lineages, with the highest complexity in primates. Within 6 million years, the splicing profiles of physiologically equivalent organs diverged such that they are more strongly related to the identity of a species than they are to organ type. Most vertebrate species-specific splicing patterns are cis-directed. However, a subset of pronounced splicing changes are predicted to remodel protein interactions involving trans-acting regulators. These events likely further contributed to the diversification of splicing and other transcriptomic changes that underlie phenotypic differences among vertebrate species

    The evolutionary landscape of alternative splicing in vertebrate species.

    No full text
    How species with similar repertoires of protein-coding genes differ so markedly at the phenotypic level is poorly understood. By comparing organ transcriptomes from vertebrate species spanning ~350 million years of evolution, we observed significant differences in alternative splicing complexity between vertebrate lineages, with the highest complexity in primates. Within 6 million years, the splicing profiles of physiologically equivalent organs diverged such that they are more strongly related to the identity of a species than they are to organ type. Most vertebrate species-specific splicing patterns are cis-directed. However, a subset of pronounced splicing changes are predicted to remodel protein interactions involving trans-acting regulators. These events likely further contributed to the diversification of splicing and other transcriptomic changes that underlie phenotypic differences among vertebrate species
    corecore