475 research outputs found

    Classical running of neutrino masses from six dimensions

    Full text link
    We discuss a six dimensional mass generation for the neutrinos. Active neutrinos live on a three-brane and interact via a brane localized mass term with a bulk six-dimensional standard model singlet (sterile) Weyl fermion, the two dimensions being transverse to the three-brane. We derive the physical neutrino mass spectrum and show that the active neutrino mass and Kaluza-Klein masses have a logarithmic cutoff divergence related to the zero-size limit of the three-brane in the transverse space. This translates into a renormalisation group running of the neutrino masses above the Kaluza-Klein compactification scale coming from classical effects, without any new non-singlet particles in the spectrum. For compact radii in the eV--MeV range, relevant for neutrino physics, this scenario predicts running neutrino masses which could affect, in particular, neutrinoless double beta decay experiments.Comment: 23 pages, 2 figure

    Scaling and tuning of EW and Higgs observables

    Get PDF
    We study deformations of the SM via higher dimensional operators. In particular, we explicitly calculate the one-loop anomalous dimension matrix for 13 bosonic dimension-6 operators relevant for electroweak and Higgs physics. These scaling equations allow us to derive RG-induced bounds, stronger than the direct constraints, on a universal shift of the Higgs couplings and some anomalous triple gauge couplings by assuming no tuning at the scale of new physics, i.e. by requiring that their individual contributions to the running of other severely constrained observables, like the electroweak oblique parameters or Γ(h→γγ)\Gamma(h \rightarrow \gamma\gamma), do not exceed their experimental direct bounds. We also study operators involving the Higgs and gluon fields.Comment: v2: 41 pages, 12 tables, 4 figures. Plots of the RG-induced bounds from S and T added, presentation of our approach in sections 2 and 4 improved, a few typos fixed, references added, conclusions and analysis unchanged. Version to appear in JHE

    Bubble formation in Ď•6\phi^6 potential

    Full text link
    Scalar field theory with an asymmetric potential is studied at zero temperature and high-temperature for Ď•6\phi^6 potential. The equations of motion are solved numerically to obtain O(4) spherical symmetric and O(3) cylindrical symmetric bounce solutions. These solutions control the rates for tunneling from the false vacuum to the true vacuum by bubble formation. The range of validity of the thin-wall approximation (TWA) is investigated. An analytical solution for the bounce is presented, which reproduces the action in the thin-wall as well as the thick-wall limits.Comment: 22 pag

    Oblique Corrections from Higgsless Models in Warped Space

    Full text link
    We calculate the tree-level oblique corrections to electroweak precision observables generated in higgless models of electroweak symmetry breaking with a 5D SU(2)_L x SU(2)_R x U(1)_{B-L} gauge group on a warped background. In the absence of brane induced kinetic terms (and equal left and right gauge couplings) we find the S parameter to be ~1.15, while T,U~0, as in technicolor theories. Planck brane induced kinetic terms and unequal left-right couplings can lower S, however for sufficiently low values of S tree-level unitarity will be lost. A kinetic term localized on the TeV brane for SU(2)_D will generically increase S, however an induced kinetic term for U(1)_{B-L} on the TeV brane will lower S. With an appropriate choice of the value of this induced kinetic term S~0 can be achieved. In this case the mass of the lowest Z' mode will be lowered to about ~300 GeV.Comment: 18 pages, LaTeX, 2 figures include

    Supernovae as a probe of particle physics and cosmology

    Get PDF
    It has very recently been demonstrated by Csaki, Kaloper and Terning (CKT) that the faintness of supernovae at high redshift can be accommodated by mixing of a light axion with the photon in the presence of an intergalactic magnetic field, as opposed to the usual explanation of an accelerating universe by a dark energy component. In this paper we analyze further aspects of the CKT mechanism and its generalizations. The CKT mechanism also passes various cosmological constraints from the fluctuations of the CMB and the formation of structure at large scales, without requiring an accelerating phase in the expansion of the Universe. We investigate the statistical significance of current supernova data for pinning down the different components of the cosmological energy-momentum tensor and for probing physics beyond the standard models.Comment: 17 pages, LaTeX, 4 figures; v2: typos corrected, minor changes, references added; v3: updated figures, details regarding fits include

    Massive Gravity on a Brane

    Get PDF
    At present no theory of a massive graviton is known that is consistent with experiments at both long and short distances. The problem is that consistency with long distance experiments requires the graviton mass to be very small. Such a small graviton mass however implies an ultraviolet cutoff for the theory at length scales far larger than the millimeter scale at which gravity has already been measured. In this paper we attempt to construct a model which avoids this problem. We consider a brane world setup in warped AdS spacetime and we investigate the consequences of writing a mass term for the graviton on a the infrared brane where the local cutoff is of order a large (galactic) distance scale. The advantage of this setup is that the low cutoff for physics on the infrared brane does not significantly affect the predictivity of the theory for observers localized on the ultraviolet brane. For such observers the predictions of this theory agree with general relativity at distances smaller than the infrared scale but go over to those of a theory of massive gravity at longer distances. A careful analysis of the graviton two-point function, however, reveals the presence of a ghost in the low energy spectrum. A mode decomposition of the higher dimensional theory reveals that the ghost corresponds to the radion field. We also investigate the theory with a brane localized mass for the graviton on the ultraviolet brane, and show that the physics of this case is similar to that of a conventional four dimensional theory with a massive graviton, but with one important difference: when the infrared brane decouples and the would-be massive graviton gets heavier than the regular Kaluza--Klein modes, it becomes unstable and it has a finite width to decay off the brane into the continuum of Kaluza-Klein states.Comment: 26 pages, LaTeX. v2: extended version with an appendix added about non Fierz-Pauli mass terms. Few typos corrected. Final version appeared in PR

    Brane Cosmology Solutions with Bulk Scalar Fields

    Get PDF
    Brane cosmologies with static, five-dimensional and Z_2 symmetric bulks are analysed. A general solution generating mechanism is outlined. The qualatitive cosmological behaviour of all such solutions is determined. Conditions for avoiding naked bulk singularities are also discussed. The restrictions placed on the solutions by the assumption of such a static bulk are investigated. In particular the requirement of a non-standard energy-momentum conservation law. The failure of such solutions to provide viable quintessence terms in the Friedmann equations is also discussed.Comment: 15 pages, references added, minor change

    The S-parameter in Holographic Technicolor Models

    Get PDF
    We study the S parameter, considering especially its sign, in models of electroweak symmetry breaking (EWSB) in extra dimensions, with fermions localized near the UV brane. Such models are conjectured to be dual to 4D strong dynamics triggering EWSB. The motivation for such a study is that a negative value of S can significantly ameliorate the constraints from electroweak precision data on these models, allowing lower mass scales (TeV or below) for the new particles and leading to easier discovery at the LHC. We first extend an earlier proof of S>0 for EWSB by boundary conditions in arbitrary metric to the case of general kinetic functions for the gauge fields or arbitrary kinetic mixing. We then consider EWSB in the bulk by a Higgs VEV showing that S is positive for arbitrary metric and Higgs profile, assuming that the effects from higher-dimensional operators in the 5D theory are sub-leading and can therefore be neglected. For the specific case of AdS_5 with a power law Higgs profile, we also show that S ~ + O(1), including effects of possible kinetic mixing from higher-dimensional operator (of NDA size) in the 5D5D theory. Therefore, our work strongly suggests that S is positive in calculable models in extra dimensions.Comment: 21 pages, 2 figures. v2: references adde

    No-Go Theorem for Horizon-Shielded Self-Tuning Singularities

    Get PDF
    We derive a simple no-go theorem relating to self-tuning solutions to the cosmological constant for observers on a brane, which rely on a singularity in an extra dimension. The theorem shows that it is impossible to shield the singularity from the brane by a horizon, unless the positive energy condition (rho+p >= 0) is violated in the bulk or on the brane. The result holds regardless of the kinds of fields which are introduced in the bulk or on the brane, whether Z_2 symmetry is imposed at the brane, or whether higher derivative terms of the Gauss-Bonnet form are added to the gravitational part of the action. However, the no-go theorem can be evaded if the three-brane has spatial curvature. We discuss explicit realizations of such solutions which have both self-tuning and a horizon shielding the singularity.Comment: 7 pages, 4 figures, revtex; added reference and minor correction
    • …
    corecore