We study deformations of the SM via higher dimensional operators. In
particular, we explicitly calculate the one-loop anomalous dimension matrix for
13 bosonic dimension-6 operators relevant for electroweak and Higgs physics.
These scaling equations allow us to derive RG-induced bounds, stronger than the
direct constraints, on a universal shift of the Higgs couplings and some
anomalous triple gauge couplings by assuming no tuning at the scale of new
physics, i.e. by requiring that their individual contributions to the running
of other severely constrained observables, like the electroweak oblique
parameters or Γ(h→γγ), do not exceed their
experimental direct bounds. We also study operators involving the Higgs and
gluon fields.Comment: v2: 41 pages, 12 tables, 4 figures. Plots of the RG-induced bounds
from S and T added, presentation of our approach in sections 2 and 4
improved, a few typos fixed, references added, conclusions and analysis
unchanged. Version to appear in JHE