1,295 research outputs found
Bose-Einstein condensates in accelerated double-periodic optical lattices: Coupling and Crossing of resonances
We study the properties of coupled linear and nonlinear resonances. The
fundamental phenomena and the level crossing scenarios are introduced for a
nonlinear two-level system with one decaying state, describing the dynamics of
a Bose-Einstein condensate in a mean-field approximation (Gross-Pitaevskii or
nonlinear Schroedinger equation). An important application of the discussed
concepts is the dynamics of a condensate in tilted optical lattices. In
particular the properties of resonance eigenstates in double-periodic lattices
are discussed, in the linear case as well as within mean-field theory. The
decay is strongly altered, if an additional period-doubled lattice is
introduced. Our analytic study is supported by numerical computations of
nonlinear resonance states, and future applications of our findings for
experiments with ultracold atoms are discussed.Comment: 12 pages, 17 figure
Rural-urban food, nutrient and virtual water flows in selected West African cities
Food consumption / Water quality / Nutrients / Urban agricuture / Food production
Optical realization of the two-site Bose-Hubbard model in waveguide lattices
A classical realization of the two-site Bose-Hubbard Hamiltonian, based on
light transport in engineered optical waveguide lattices, is theoretically
proposed. The optical lattice enables a direct visualization of the
Bose-Hubbard dynamics in Fock space.Comment: to be published, J Phys. B (Fast Track Communication
Informal irrigation in urban West Africa: An overview
Irrigated farming / Urban agriculture / Suburban agriculture / Farm size / Farming systems / Health hazards / Water pollution / Farm income
Event Stream Processing with Multiple Threads
Current runtime verification tools seldom make use of multi-threading to
speed up the evaluation of a property on a large event trace. In this paper, we
present an extension to the BeepBeep 3 event stream engine that allows the use
of multiple threads during the evaluation of a query. Various parallelization
strategies are presented and described on simple examples. The implementation
of these strategies is then evaluated empirically on a sample of problems.
Compared to the previous, single-threaded version of the BeepBeep engine, the
allocation of just a few threads to specific portions of a query provides
dramatic improvement in terms of running time
From Cooperative Scans to Predictive Buffer Management
In analytical applications, database systems often need to sustain workloads
with multiple concurrent scans hitting the same table. The Cooperative Scans
(CScans) framework, which introduces an Active Buffer Manager (ABM) component
into the database architecture, has been the most effective and elaborate
response to this problem, and was initially developed in the X100 research
prototype. We now report on the the experiences of integrating Cooperative
Scans into its industrial-strength successor, the Vectorwise database product.
During this implementation we invented a simpler optimization of concurrent
scan buffer management, called Predictive Buffer Management (PBM). PBM is based
on the observation that in a workload with long-running scans, the buffer
manager has quite a bit of information on the workload in the immediate future,
such that an approximation of the ideal OPT algorithm becomes feasible. In the
evaluation on both synthetic benchmarks as well as a TPC-H throughput run we
compare the benefits of naive buffer management (LRU) versus CScans, PBM and
OPT; showing that PBM achieves benefits close to Cooperative Scans, while
incurring much lower architectural impact.Comment: VLDB201
Peach palm (Bactris gasipaes) in tropical Latin America: implications for biodiversity conservation, natural resource management and human nutrition
Peach palm (Bactris gasipaes) is a multi-purpose palm tree native to tropical Latin America, which is predominantly cultivated by smallholders in agroforestry systems. The fruits are rich in starch and contribute importantly to food security and the cash income of farmers who cultivate them. Complex value chains have emerged that link producers to consumers, but irregular product quality and market chain inequalities undermine the economic well-being of producers and retailers. Peach palm is genetically diverse, but screening for traits of commercial and nutritional interest is required to enhance the use of its genetic resources. Alliances between public organizations and private enterprises are needed to realize the potential for processing novel products from peach palm, especially in the pharmaceutical and cosmetic sectors. The diverse challenges that emerge at different stages of production, processing and marketing require participatory research that directly involves stakeholders from the beginning
Définitions et mise en oeuvre des processus participatifs dans l'aménagement des cours d'eau en Suisse. Résultats d'une enquête auprès des services cantonaux responsables de l'aménagement des cours d'eau
PT symmetry, Cartan decompositions, Lie triple systems and Krein space related Clifford algebras
Gauged PT quantum mechanics (PTQM) and corresponding Krein space setups are
studied. For models with constant non-Abelian gauge potentials and extended
parity inversions compact and noncompact Lie group components are analyzed via
Cartan decompositions. A Lie triple structure is found and an interpretation as
PT-symmetrically generalized Jaynes-Cummings model is possible with close
relation to recently studied cavity QED setups with transmon states in
multilevel artificial atoms. For models with Abelian gauge potentials a hidden
Clifford algebra structure is found and used to obtain the fundamental symmetry
of Krein space related J-selfadjoint extensions for PTQM setups with
ultra-localized potentials.Comment: 11 page
Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates
We study the dynamical stability of the macroscopic quantum oscillations
characterizing a system of three coupled Bose-Einstein condensates arranged
into an open-chain geometry. The boson interaction, the hopping amplitude and
the central-well relative depth are regarded as adjustable parameters. After
deriving the stability diagrams of the system, we identify three mechanisms to
realize the transition from an unstable to stable behavior and analyze specific
configurations that, by suitably tuning the model parameters, give rise to
macroscopic effects which are expected to be accessible to experimental
observation. Also, we pinpoint a system regime that realizes a
Josephson-junction-like effect. In this regime the system configuration do not
depend on the model interaction parameters, and the population oscillation
amplitude is related to the condensate-phase difference. This fact makes
possible estimating the latter quantity, since the measure of the oscillating
amplitudes is experimentally accessible.Comment: 25 pages, 12 figure
- …
