
From Cooperative Scans to Predictive Buffer Management

Michał Świtakowski
Actian Corporation

michal.switakowski@actian.com

Peter Boncz
CWI Amsterdam

p.boncz@cwi.nl

Marcin _Zukowski
Actian Corporation

marcin.zukowski@actian.com

ABSTRACT
In analytical applications, database systems often need to
sustain workloads with multiple concurrent scans hitting the
same table. The Cooperative Scans (CScans) framework,
which introduces an Active Buffer Manager (ABM) compo-
nent into the database architecture, has been the most effec-
tive and elaborate response to this problem, and was initially
developed in the X100 research prototype. We now report
on the the experiences of integrating Cooperative Scans into
its industrial-strength successor, the Vectorwise database
product. During this implementation we invented a simpler
optimization of concurrent scan buffer management, called
Predictive Buffer Management (PBM). PBM is based on the
observation that in a workload with long-running scans, the
buffer manager has quite a bit of information on the work-
load in the immediate future, such that an approximation of
the ideal OPT algorithm becomes feasible. In the evaluation
on both synthetic benchmarks as well as a TPC-H through-
put run we compare the benefits of naive buffer management
(LRU) versus CScans, PBM and OPT; showing that PBM
achieves benefits close to Cooperative Scans, while incurring
much lower architectural impact.

1. INTRODUCTION
Analytical databases systems are the cornerstone of many

business intelligence architectures. Workloads in these sys-
tems tend to be characterized by large-scale data access:
whereas transactional workloads zoom in on just a few records,
analytical workloads often touch a significant fraction of the
tuples. Consequently, full table scans and range-scans are
frequent in such workloads. The frequency of scans has been
increased further by the market trend to push away from the
reliance on complex materialized view and indexing strate-
gies, towards less DBA tuning-intensive systems with more
predictable performance, often using columnar storage.

Consequently, a workload of concurrent analytical queries
often consist of concurrent table scans. Traditionally, database
systems employed simple LRU or MRU buffer management

strategies, which causes concurrent scans to compete for disk
access. This not only increases the latency of individual
queries, as they take turns on the I/O resources, but also
decreases the overall system I/O throughput, as different
scans reduce the access locality and might cause thrashing.

In response to this problem, circular scans [5] were in-
troduced in Microsoft SQLServer and other products, such
that concurrent queries attach to an already ongoing scan,
limiting thrashing. Subsequently, in DB2 the buffer man-
ager was additionally changed to throttle queries [13] where
a fast query that scans together with a slower query gets
slowed down such that both stay together and keep shar-
ing I/O. The most elaborate proposal in this direction came
from the X100 research prototype1 in the form of Cooper-
ative Scans [21]. Cooperative Scans transform the normal
buffer manager into an Active Buffer Manager (ABM), in
which scans at the start of the execution register their data
interest. With this knowledge of all concurrent scans, ABM
adaptively chooses which page to load next and to pass to
which scan(s), without having to adhere to the physical table
order, always trying to keep as many queries busy as possi-
ble. To do this, ABM uses a flexible set of relevance func-
tions which both strive to optimize overall system through-
put and average query latency.

Contributions. The first contribution of this paper is to
report on experiences in implementing Cooperative Scans in
Vectorwise [18], a modern analytical database product us-
ing columnar storage, that evolved from the X100 research
prototype in which the original Cooperative Scans were con-
ceived. In the first versions of Vectorwise, Cooperative Scans
were not supported, as integrating ABM turned out to be
complex, in particular due to its interaction with concurrent
updates, data reorganization and parallel query execution.
We came round to implementing this now, and it turned out
to be complicated yet feasible. In the course of the project,
however, we also came up with an alternative approach that
achieves much of the same goals, but with significantly less
impact to the other system components. Thus, the second
contribution of the paper is this new approach to concurrent
scan buffer management, named Predictive Buffer Manage-
ment (PBM). Rather that delivering data out-of-order as
Cooperative Scans do, the main idea of PBM is to improve
the buffer management policy. PBM tracks the progress of
all scan queries, and uses this progress tracking to estimate
the time of next consumption of each disk page. PBM ex-
ploits this knowledge to give those pages that are needed

1The X100 system later evolved into Vectorwise – see
www.actian.com/vectorwise

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/15476305?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


soonest a higher temperature such that they will be likely
kept in the buffer. As such, this approach comes close to
the perfect-oracle OPT algorithm [1]. While OPT is usu-
ally of theoretical interest only, as advance knowledge of all
accesses is unrealistic, PBM exploits the fact that with long-
running scan queries the system does have a good picture
of the immediate future accesses. Our evaluation, both on
the synthetic benchmarks from [21] as well as the through-
put run of TPC-H, shows that for almost all buffer sizes as
well as many disk speeds, PBM achieves benefits close to
Cooperative Scans.

Outline. In Section 2 we re-cap the main ideas behind Co-
operative Scans, before describing the technical challenges
we had to solve in order to integrate ABM in a produc-
tion system (Vectorwise) rather than a research prototype
(X100). We then describe Predictive Buffer Management
(PBM) as a simpler alternative in Section 3. In Section 4
we evaluate all approaches and also compare them to the
theoretical optimal OPT algorithm, both on the synthetic
benchmarks of [21] and the TPC-H throughput experiment.
We finally describe future steps and related work in resp.
Sections 5, and 6 before concluding in Section 7.

2. MATURING COOPERATIVE SCANS
CScans Re-Cap. Figures 1 and 2 contrast traditional
buffer management with the Cooperative Scans (CScans)
framework [21]. Whereas the loading decisions in the tradi-
tional approach are made by each scan operator individually,
and the buffer manager is a cache managed with an algo-
rithm like LRU, in Cooperative Scans loading decisions are
taken by an Active Buffer Manager (ABM). The CScan op-
erator is a scan that may produce data out-of-order, in the
order it receives it from ABM. This flexibility is exploited
by ABM to optimize both average query latency of all con-
current CScans as well as overall system throughput. ABM
requires all CScan operations in the system to register their
needed data ranges upfront with the RegisterCScan() func-
tion. Data is divided into large portions (chunks). Once
a CScan is registered, it repeatedly asks ABM to deliver
data to process (GetChunk()). This process is repeated un-
til all data ranges registered by the CScan have been de-
livered. Finally, the CScan can unregister itself from ABM
(UnregisterCScan()).

ABM executes in a separate thread that is responsible for
the following operations:

• choosing a CScan for which it will deliver data.

• choosing a chunk that will be loaded.

• performing actual loading of the data from disk.

• waking up any blocked CScans that are interested in
processing the loaded chunk.

• evicting chunks when the buffer space gets full.

To make the above-mentioned decisions, ABM uses four
relevance functions. They assign priority to a CScan or a
chunk depending on a specific operation that needs to be
done. In particular: QueryRelevance() is computed on all
active CScans, to choose which most urgently needs data. It
aims to prioritize starved queries and short queries. Starved
queries are queries that still need to process data, but have
(almost) no available data in the buffer pool.

Once ABM has chosen which CScan operator to serve, the
LoadRelevance() function is computed on all chunks to deter-
mine which data is most worthwhile to load for it. To max-
imize buffer reuse, it favors chunks that many other CScans
are interested in.

In case a given CScan has more than one chunk available
in the memory, ABM computes the UseRelevance() function
for all cached chunks to decide which one to give to the
CScan to process. To make chunks ready for eviction earlier,
it chooses chunks that fewest CScans are interested in.

Finally, the decision which chunk to evict is made by com-
puting KeepRelevance() on all cached chunks, and evicting
the lowest scoring one (if it scores lower than the highest
computed LoadRelevance()). This function aims to evict
chunks that fewest CScans are interested in.

ABM makes decisions on a large granularity of a chunk
(at least a few hundreds of thousands of tuples), rather than
disk pages. One reason to choose such a granularity is to pre-
serve sequential locality on the page level, even though the
concurrent CScans will trigger scattered chunk load requests.
The second reason is that with large chunks, there are many
fewer chunks than there are pages, and ABM can use more
computationally-expensive algorithms in its scheduling pol-
icy than for normal buffer management.

In column stores, it is wrong to think of a chunk as a set of
pages. Rather, chunks have to be viewed logically as ranges
of tuples; for instance each 100,000 consecutive tuples could
be viewed as one chunk. The reason is that in columnar
databases each column occupies a highly different amount
of pages, due to different data types, and data compression
ratio. One column from the same table might be stored on a
single page, while other columns from that same table may
take thousands of pages. When ABM decides to load (or
evict) a chunk, in a column store this range of tuples will
be translated to a set of pages, for each column involved.
It may be the case that one page contains data from mul-
tiple adjacent chunks. This property of columnar storage is
certainly a complication, but the general principles behind
Cooperative Scans remain unchanged [21].

Implementation Experiences. We now discuss the most
important issues that needed to be solved to fully imple-
ment CScan and integrate ABM in the Vectorwise system.
Vectorwise is an analytical database system [12], created by
integrating the upper layers (APIs, SQL parser, optimizer)
of Ingres with the vectorized query execution and hybrid
row- and columnar storage layers, which evolved from the
X100 prototype [19].

The design of Cooperative Scans implies that ABM is a
global object governing the behavior of all scan operators
running in the system, yet in a full-fledged database system,
introducing objects that have a global state has many com-
plications. In the X100 [20, 21] research prototype, ABM
and CScan were implemented without regards for updates,
parallelism, or coexistence with traditional scan (which will
still be used in situations where the query plan absolutely
needs tuple order and hence cannot use a CScan).

We now discuss how we met the challenges that arose from
implementing these missing features.

2.1 Updates
Vectorwise uses special in-memory differential structures

called Positional Delta Trees (PDTs) [11] to handle modifi-
cations of a database. Differential updates avoid I/O when



Figure 1: Traditional Buffer Manager Figure 2: Cooperative Scans Figure 3: Predictive Buffer Manager

updating columnar data (which would otherwise perform
one I/O write per column per modified tuple!) and also
avoid recompression CPU overhead, since columnar data
would have to be decompressed, modified, and then com-
pressed again. Each scan (classical Scan or CScan) operator
therefore reads stale columnar data, but performs on-the-fly
PDT merging to produce output that corresponds to the
latest database state. PDTs organize differences by position
rather than by key value, so merging is cheap CPU-wise and
also avoids the need to read the key columns from disk.

Vectorwise implements snapshot isolation [2] to handle
concurrent transactions, and it uses the PDTs to represent
these snapshots. Rather than giving each transaction a sep-
arate copy of one big PDT structure, Vectorwise exploits the
fact that differential structures can be stacked (differences
on differences, etc.), so a snapshot consists of the stable table
on disk, together with three layers of PDTs. Only the top-
most and smallest PDT is private to a particular snapshot,
the other PDT levels are shared between transactions [11].
Therefore, the cost of snapshot isolation in terms of memory
consumption is low.

PDT Merge in CScan. Our first challenge was to allow
CScan operators to support PDT merging. The main differ-
ence between the Scan and CScan operators is that the Scan

operator receives data in-order, whereas the CScan operator
receives data out-of-order in a chunk-at-time manner. This
complicates the PDT merging operation: applying updates
by position is easier if all tuples arrive in positional order,
than when they (periodically) jump around due to the out-
of-order data delivery.

First, we explain PDT merging in general; later we come
back at the complications due to the out-of-order delivery.

The updates stored in PDTs are indexed by position, and
merging revolves around two kinds of tuple positions: SIDs
and RIDs. The Stable ID (SID) is a 0-based dense sequence
identifying tuples stored in the stable storage, i.e. the state
of a table without updates applied. The Row ID (RID) is
a 0-based dense sequence enumerating the stream that is
visible to the query processing layer, i.e. after updates are
applied to data fetched from the stable storage. The SID
and RID are different unless all PDTs are empty, i.e. PDT
merging is an identity operation.

The PDT is a tree data structure that stores Delete, In-
sert and Modification actions, organized using SID as a key.
Each PDT node also contains the running delta, which is
the difference between RID and SID caused by the updates
in the underlying PDT subtree. The PDT data structure is
stored in RAM and has logarithmic CPU cost for updates,
as well for RID-SID translation – this translation can be
performed in both directions.

RIDs are very volatile under updates (a delete in the mid-
dle of the table decreases all subsequent RIDs) and are there-
fore not stored anywhere, but generated during PDT merg-
ing. SIDs follow implicitly from the physical tuple order on
disk and are not stored.

For tuples belonging to the stable storage (stable tuples)
not marked as deleted in PDTs, the RID of that tuple can
be translated to its SID, as every stable tuple has a unique
SID. For tuples that are not part of the stable storage, i.e.
inserts stored in the PDT, their RID translates to the SID
of the first stable tuple that follows it. As a consequence,
for new tuples inserted in PDTs only, there may be multiple
tuples that are assigned the same value of SID. Thus, it is not
possible to define SID to RID conversion as an inverse of RID
to SID conversion, because the RID to SID conversion is not
an injective function. However, it is possible to introduce
two possible variants of SID to RID conversion. A certain
SID can be translated either into lowest RID that maps to
it, or the highest one. We introduce the RIDtoSID() function
to perform RID to SID conversion, and SIDtoRIDlow() and
SIDtoRIDhigh() functions to perform the ,,low” and ,,high”
variants of SID to RID conversion, respectively.

Figure 4 depicts an example of conversion between SID
and RID. In the lower part, we can see stable tuples stored
on the hard disk and their respective SIDs. After tuples are
loaded and merged with changes stored in PDTs, we obtain
a new stream of tuples that is enumerated with RID. Deleted
tuples are marked with red, whereas the inserted ones with
green. Arrows indicate the translation between SID and
RID. The blue arrows indicate results of the SIDtoRIDlow()

function, whereas the red ones correspond to SIDtoRIDhigh().
Note that some of the arrows are only one-way. They indi-
cate tuples, for which it is not possible to reverse the RID
to SID conversion, because they are in the middle of a se-
quence of tuples with the same value of SID. The deleted
tuples are stored on the hard disk and loaded into mem-
ory but get eliminated by the PDT merging process. Thus,
there is no RID that translates into the SID of those tu-
ples. However, it is still possible to translate their SIDs to
RIDs. The assigned RID is the lowest RID that translates
into a SID higher than the one of the deleted tuple.

The Active Buffer Manager has been designed to work
purely on the storage level. It is not aware of the existence
of in-memory updates and PDTs in particular – concurrent
queries may execute in different snapshots and have different
PDT data. Thus, the concept of ABM chunks as logical
tuple ranges is defined in terms of SIDs. However, the CScan

range-scan operator is initialized in the query plan with a list
of RID ranges that it has to produce for its parent operators.
Those RID ranges must hence be converted into SID ranges



Figure 4: Conversion between SID and RID

that ABM operates on.
Once ABM loads a chunk and passes it to the CScan oper-

ator, an inverse process has to be performed. As the RID to
SID translation is not reversible, the algorithm is more com-
plicated. Given a certain chunk, which is effectively a range
of stable tuples that are ready in the memory, we must de-
termine what RID range can be generated out of them. The
lower SID boundary is translated with SIDtoRIDlow(), and
the upper boundary with SIDtoRIDhigh() to get widest pos-
sible RID range that can be generated. Note that the SID
range of neighboring chunks after translation to RID using
the same approach may overlap with the RID range of chunk
that has been retrieved. Thus, it is necessary to keep track
of all RID ranges that have already been processed by the
CScan operator. This is the major new requirement com-
ing from the fact that CScans receive data out-of-order from
ABM. Once a new SID range (i.e. chunk) is delivered by
ABM and translated to RID range, it needs to be trimmed
to make sure no tuples are generated twice. Also, whenever
a new chunk starts, the PDT merging algorithm needs to be
re-initialized. This involves finding a proper position in the
PDT structure, where the process of merging should start.

Bulk Appends. For bulk inserts, Vectorwise avoids filling
PDTs with huge amounts of insert nodes, but rather allows
physical data appends to the stable tables. For such Append

operators, the system must also provide a snapshot isolation
mechanism. This type of snapshot is a memory-resident set
of arrays that contain references to pages (page identifiers)
belonging to each column of the table (one array per col-
umn). Adding new data is performed by creating new pages
and adding references to them in the snapshot.

ABM needs to be aware of these storage-level snapshots.
Additionally, since it is responsible for loading the pages,
it has to determine how tuple ranges registered by CScan

operators translate to pages that need to be loaded. This
becomes more complex when concurrent queries appending
data are executed. Figure 5 presents four simple transac-
tions that add new data using the Append operator and scan
the table afterwards with a CScan. Transaction T2 differs
from the others by using the Commit() statement to make its
changes persistent. Suppose T3 and T4 start after T2 ends
and T1 starts before T2’s end. An example course of exe-
cution of those transactions and snapshots they are working
on is presented in Figure 6. Snapshot 1 represents the initial
state of the table. The table consists of four pages identified
with numbers from 0 to 3. It is the master snapshot, that all
transactions start with, thus it is marked with red. T1 and

T1 Append(table, <data stream 1>)

T2 Append(table, <data stream 2>)

T1 CScan(table)

T2 CScan(table)

T2 Commit()

T3 Append(table, <data stream 3>)

T4 Append(table, <data stream 4>)

T3 CScan(table)

T4 CScan(table)

Figure 5: Schedule for Transactions T1-T4

Figure 6: Snapshot isolation for Appends in Vectorwise

T2 begin with appending new data to the table. As a result,
two different transaction-local (marked with blue) snapshots
are created: Snapshot 2 and Snapshot 3. They share refer-
ences to the first four pages but their last two pages are dif-
ferent, as they were created separately for each transaction
by Append operators. T2 commits its applied changes while
T1 does not. Consequently, the snapshot that T2 worked
on becomes the master snapshot (marked with red). From
now on, all new transactions will use Snapshot 3. Thus, T3
and T4 append data to the new snapshot.

The crucial observation is that all transactions running in
the system work on snapshots that have a common prefix.
For example, the common prefix consists of pages {0, 1, 2,
3} when T1 and T2 are the only transactions working in the
system.

In the presented scenario ABM needs to detect transac-
tions working on different snapshots. The fact that snap-
shots have common prefixes can be exploited, so that queries
can benefit from sharing opportunities regardless of differ-
ences in snapshots. To achieve that, we extend ABM with
the notions of shared chunks and local chunks. Shared chunks
consist of pages that belong to at least two snapshots that
are used by transactions at certain moment. Pages of lo-
cal chunks belong to only one snapshot. It should be noted
that chunks encompass multiple columns. Thus, a chunk
can be regarded as shared only if all its pages in all columns
belong to snapshots of two transactions. Even after append-
ing a single value to a table, its last chunk becomes local.

Figure 6 can be also interpreted on the chunk level instead
of the page level. Let us focus on such a situation from the
perspective of ABM. Shared chunks can be detected by find-
ing the longest prefix that belongs to at least two snapshots.
Suppose that transactions T1, T3 and T4 are working in the
system, so the longest shared prefix is the set {0, 1, 2, 3, 6,
7}. Consequently, we can exploit that knowledge and load



those chunks earlier as it increases sharing opportunities.
Note that the longest shared prefix can change as queries

enter and leave the system. For example, when T1 and T2
are the only working transactions, the shared prefix con-
sists of chunks {0, 1, 2, 3}. However, when T2, T3 and
T4 work in the system, the longest shared prefix that can
be found is the set {0, 1, 2, 3, 6, 7}. An important obser-
vation is that the longest shared prefix is in fact the only
shared prefix that can be found. Suppose that at certain
moment there are two transactions whose snapshots contain
pages {0, 1, 2, 3, 4, 5} (Snapshot 2 in Figure 6) and two
transactions working on pages {0, 1, 2, 3, 6, 7} (Snapshot 3
in Figure 6). Having two transactions working on identi-
cal snapshots means that this snapshot must have been the
master snapshot at the moment these transactions started,
or one transaction already committed (making its snapshot
the master snapshot) before the other started. Thus, both
Snapshot 2 and Snapshot 3 must have been master snap-
shots at some moment. This is impossible, because they
have a non-empty intersection, but none of them is a subset
of another, i.e. none of them could have been created by
appending to another. In Vectorwise, only one of the con-
current transactions that applied Appends to its snapshot can
commit its changes and make its snapshot the master snap-
shot. The other transactions are detected to be conflicting
and consequently aborted. Thus, there may be concurrent
transactions working either on Snapshot 2 or Snapshot 3,
but not on both.

Every time a new CScan scanning a certain table enters
the system, ABM finds the longest prefix that is shared by
at least two CScan operators and marks chunks accordingly.
Chunks belonging to the found prefix are marked as shared,
whereas the other ones are marked as local. The same pro-
cedure is performed when a CScan leaves the system as it
may influence the longest shared prefix as well. Keeping
track of shared and local chunks allows to maximize sharing
opportunities in case transactions work on similar, but not
equal versions of the same table. Moreover, it allows proper
adjustment of metadata used for scheduling. In particular,
shared chunks have higher chances to be loaded and kept
in the memory longer, whereas local chunks are loaded and
used only once, typically in the final phase of a CScan.

PDT Checkpoints. PDT checkpointing [11] is an aspect
closely related to PDT updates. When updates are applied
to the database, the memory usage of PDTs may grow con-
siderably, and this can not be sustained forever. At some
point, the contents of the PDTs have to be migrated to disk,
creating a new stable table image. A simple implementation
of this process involves scanning the table from the stable
storage, merging updates stored in PDTs and storing the
result as a new version of the same table. After checkpoint-
ing finishes, all incoming queries will work on this new table
image. Note that for the new version of the table a new set
of pages is allocated, i.e. the old and the new version do
not share any pages. As depicted in Figure 7, a checkpoint
results in creating a new master snapshot (marked as red)
that consists of new pages. After the checkpoint is finished
and the new version of the master snapshot is created, all
starting transactions will use Snapshot 2. At the same time,
there may be still transactions in the system working on the
old Snapshot 1. Once all transactions using Snapshot 1 are
finished, Snapshot 1 can be destroyed.

Figure 7: Behavior of a checkpoint. PDT changes are ap-
plied to create a new snapshot.

ABM needs to detect that a certain table has been check-
pointed, as transactions using Snapshot 1 and Snapshot 2
work on non-overlapping sets of pages, thus cannot share
pages loaded in the buffer pool. Every time a new CScan is
registered, ABM verifies the set of pages belonging to the
snapshot of transaction that CScan is a part of.

There are four possible cases to handle:

(i) It is the first CScan that accesses that particular table –
ABM has to create and initialize metadata for chunks,
i.e. register new chunks.

(ii) There are other CScans working on the same table and
their snapshot is identical – ABM does not need to
change its metadata related to tables.

(iii) There are other CScans working on the same table and
a common prefix with their snapshots can be found –
ABM has to find shared and local chunks as discussed
before.

(iv) There are other CScans working on the same table and
the snapshot of the new CScan contains different pages
that the other snapshot – ABM registers new version
of the same table along with its chunks (as in (i)).

The metadata in ABM needs to reflect changes in the
database after checkpoint was finished. Thus, every time
a CScan operator finishes and un-registers itself, ABM verifies
whether there are other CScans working on a snapshot that
is identical or has a common prefix with the snapshot of the
leaving CScan. In case there are no such CScans the metadata
related to chunks belonging to that version of the table is
destroyed.

2.2 Parallelism
Vectorwise employs intra-query parallelism that is imple-

mented by means of a set of Exchange (XChg) operators [9].
A query plan of a parallelized query is transformed to con-
tain multiple copies of certain subtrees that are connected
with special XChg operators. Those subtrees are executed in
parallel by multiple threads. An example of such a trans-
formation is depicted in Figure 8.The subtree under the Aggr operator has been duplicated
and connected with the XChg operator that merges two streams
into one. On top, there is another Aggr operator added that
computes the overall aggregate result. In particular, the
Scan operator has been replaced by two separate Scans that
each scan a separate part of the original RID range. In
Vectorwise, RID ranges are split equally between working
threads and assigned to each of the Scans as presented in



Aggr{a},{c=sum(b)}

Selecta>10

Scan{a,b},{[0,1000)}

(a)

Aggr{a},{d=sum(c)}

XChg2→1

Aggr{a},{c=sum(b)}

Selecta>10

Scan{a,b},{[0,500)}

Aggr{a},{c=sum(b)}

Selecta>10

Scan{a,b},{[500,1000)}

(b)

Figure 8: An example of a transformation of a sequential
query plan (a) into a parallel query plan (b)

Equation 1.

range [a..b) =

8>>>><>>>>:
range [a .. a + (b−a)∗1

n
)

range [a + (b−a)∗1
n

.. a + (b−a)∗2
n

)
...

range [a + (b−a)∗(n−1)
n

..a + (b−a)∗n
n

)

(1)
The current implementation of parallelism for Coopera-

tive Scans is functional but not yet optimal. In parallel
plans, we statically partition one CScan into multiple RID
ranges, creating one CScan for each thread; similar to the
policy for traditional scans. Currently, ABM is not aware
that those CScan operators belong to the same parallel query
plan. In most cases, CScans belonging to the same parallel
query plan request the same number of chunks and pro-
cess them at similar pace. However, if one or more threads
turns out to be much faster than the others, ABM will start
treating one of CScans as shorter, thus prioritize it. Unfortu-
nately, this will have negative impact on the execution time
of a parallel query as it will create parallel imbalance. Sec-
ondly, the usage of CScans in parallel query plans may lead
to increased data skew. Regardless of the actual range to
be scanned, CScan operators process data in chunk-at-time
manner and have to wait until full chunk is loaded, but the
chunk range is trimmed to a common RID boundary, as de-
scribed in Section 2.1. A CScan whose range encompasses
few chunks has to load more data than really needed. This
problem becomes more relevant after a single CScan is di-
vided into multiple CScans scanning smaller ranges.

As an example of these sub-optimalities, suppose the par-
allelization generates a plan with two CScan operators scan-
ning chunks from 0 to 4 and from 5 to 9 respectively. Let us
assume that the buffer pool contains a set of the following
chunks: {3,5,6,7,9}, so there is one chunk available for the
first CScan but four for the second one. Thus, the second
CScan will only have to wait for loading chunk 8, whereas
the first one needs to load four chunks. Consequently, the
first CScan has to wait for much more I/O, delaying the ex-
ecution of the whole query. A better approach would be to
distribute the already-loaded chunks evenly between partic-
ipating CScans and also distribute evenly the newly loaded
chunks. We defer this to future work.

2.3 Scan/CScan Coexistence

In a complex analytical DBMS there are scenarios where
the approach of out-of-order chunk-at-time data delivery is
suboptimal or cannot be used. Examples are queries that:

• exploit data that is stored in-order on disk. Storing a
table as a clustered index in Vectorwise leads to a phys-
ical tuple ordering according to the index key [19], and
this can e.g. lead to plans that exploit ordered aggre-
gation, which cannot accept data out-of-order.

• have an access pattern that is much more fine-grained
than a chunk. Vectorwise has automatic MinMax in-
dexes [20] that may restrict the scan ranges signifi-
cantly, and e.g., query plans with late column pro-
jection might generate scans that retrieve many small
RID ranges.

In such situations, the normal Scan operator is used. In
the current implementation of Cooperative Scans, ABM pins
a fixed amount of pages in the buffer pool. The disadvantage
of this simple approach is that we must statically determine
this memory budget, dividing the available RAM resources
between the two buffering schemes.

In our approach to integrating ABM and the traditional
buffer manager, we ended up giving the full buffer pool to
ABM, and extend it with an option such that a CScan can
demand in-order delivery of chunks. In that case, flexibility
is lost, but the CScan becomes a drop-in replacement for Scan.
The consequence is that range scans now always use a large
granularity (chunk). We realize that in systems built for a
mixed workload this is a disadvantage.

We considered an alternative integration of ABM and the
traditional buffer manager by creating a common page evic-
tion policy; which means that we would need to create a
common temperature with which chunks and pages could
be compared. The common policy would need a new im-
plementation of KeepRelevance() accepting both pages and
chunks. One idea to do so is to estimate the time of next
consumption of a page or chunk. This is possible to achieve
in both cases. Estimating the time of next consumption
for pages processed by a Scan operator involves estimating
its the speed and distance to the given page. In case of
chunks it is more complicated, but still feasible. Every chunk
that is cached in the memory can be assigned a score with
UseRelevance(). Sorting chunks by the score allows to deter-
mine expected order of consumption. Finally, by combining
it with a speed estimate of a certain CScan, the expected con-
sumption time can be calculated. The eviction policy would
try to evict data with highest expected time of consumption
first. We did not implement this integration of Cooperative
Scans and the traditional buffer manager yet, but the idea
of estimating a time-of-next-consumption led to the creation
of Predictive Buffer Management.

3. PREDICTIVE BUFFER MANAGEMENT
In literature on buffer management policies, the OPT

algorithm [1] represents the perfect-oracle algorithm that
provably [15] obtains best performance. OPT usually is only
of theoretical importance, as its requirement is a perfect and
full knowledge of the order of all future page accesses. Given
that, the OPT algorithm simply evicts the page that will be
referenced furthest in the future. When trying to find an in-
tegrated page temperature metric for the traditional buffer
manager and ABM, we came upon the idea of estimating



time of next consumption for pages that are the subject of
a table scan. This can be done by measuring over time the
speed with which each Scan moves through the data. This
time of next consumption is a close estimate of the metric
used in the OPT algorithm. We exploit the fact that in
an analytical database system with long-running scans, it is
possible to predict the near-term future accesses to a large
extent.

The resulting Predictive Buffer Manager (PBM) is a novel
buffer management policy that is well suited for analytical
workloads with many large scans. It shares the same ba-
sic principle with Cooperative Scans – exploiting knowledge
about currently working queries. In contrast, it does not in-
troduce a global object where all decisions regarding loading
and evicting pages are made. Similarly to traditional scan
processing (see Figure 1 and 3), I/O requests are made by
Scan operators. PBM is responsible for evicting pages when
the buffer pool is full, and does not change the order of
data access requests. As a result, PBM can be incorporated
into a database system without influencing its higher layers.
Moreover, it is independent of physical storage organization.
ABM, on the other hand, needs separate implementation
and relevance functions for NSM and DSM [21].

The interaction between PBM and Scan operators is done
by means of three functions: RegisterScan(), UnregisterScan()
and ReportScanPosition() as shown in Figure 3. As in the
case of Cooperative Scans, RegisterScan() passes informa-
tion about future page accesses of a starting Scan. To per-
form its predictions, PBM keeps track of the current position
and speed of processing of each Scan. The position and pro-
cessing speed of scans is registered by having ReportScanPosition()

invoked periodically. Finally, UnregisterScan() informs PBM
that a Scan finished and its metadata can be freed.

Figure 9 presents pseudocode of the most important func-
tions in PBM. Let us focus on RegisterScan() first. Its pur-
pose is to iterate over all pages that are going to be requested
by the Scan operator and register them. This involves finding
the number of tuples that the Scan will need to process before
a certain page is requested and saving it along with a scan ID
in the page.consuming scans collection. Finally, PagePush() is
executed to recalculate the priority of a page. Priorities of
pages are assigned by the PageNextConsumption() function,
which calculates the estimated time when the page will be
needed. Given a Scan that will need the page, this is a mat-
ter of dividing the current distance to that page in tuples by
the observed speed of the Scan. PageNextConsumption() re-
turns the nearest time (the minimum) that any of the Scan

operators that registered the page will need it.

PBM data structures. Buffer management algorithms
performed on the page level need to be CPU-efficient. PBM
thus needs to provide an efficient way to perform operations
such as registering a page, un-registering a page when it is
consumed and changing its priority. One possible solution is
using a binary heap or another priority queue structure that
provides O(log(n)) complexity for most operations. How-
ever, we found this solution to incur too much overhead in
Vectorwise, especially in highly-concurrent scenarios. We
implemented an alternative approach that maintains low
overhead and allows to benefit from our idea.

The crucial observation is that we do not strictly need
to have a fully accurate priority queue. To amortize the
cost of eviction, pages are evicted in groups of 16 or more
pages. Thus, we only need to have an ability to retrieve a

1: function RegisterScan(table, columns, range list)
2: id← GetNewScanIdentifier()
3: for all col in columns do
4: tuples behind← 0
5: for all range in range list do
6: {get a collection of pages belonging
7: to specified column and range}
8: pages← GetPages(col, range)
9: for all page in pages do
10: {register the scan id and the number of tuples
11: it will have to read before consuming this page}
12: page.consuming scans←
13: page.consuming scans ∪ (id, tuples behind)
14: tuples behind←
15: tuples behind + page.tuple count
16: {recalculate the priority of the page
17: and push to appropriate bucket}
18: PagePush(page)

19: return id
20:
21: function PageNextConsumption(page)
22: nearest consumption← NULL
23: for all (id, tuples behind) in page.consuming scans do
24: scan← GetScanById(id)
25: next consumption←
26: (tuples behind− scan.tuples consumed)/scan.speed
27: if nearest consumption = NULL or
28: next consumption < nearest consumption then
29: nearest consumption← next consumption

30: return nearest consumption

31:
32: procedure PagePush(page)
33: { if page belongs to a bucket, remove it from there}
34: if page.bucket 6= NULL then
35: BucketRemovePage(page.bucket, page)

36: nearest consumption← PageNextConsumption(page)
37: if nearest consumption = NULL then
38: BucketAddPage(not requested bucket, page)
39: else
40: bucket number ←
41: TimeToBucketNumber(nearest consumption)
42: BucketAddPage(buckets[bucket number], page)

43:
44: procedure RefreshRequestedBuckets
45: for i← 0 to Size(buckets) - 1 do
46: if time passed mod buckets[i].length = 0 then
47: buckets[i− 1]← buckets[i]
48: buckets[i− 1].length← buckets length[i− 1]

49: for i← 0 to Size(buckets) - 1 do
50: if buckets[i] = NULL then
51: buckets[i] ← NewBucket()

52: for all page in buckets[−1] do
53: PagePush(page)

54: BucketDestroy(buckets[−1])

55:
56: procedure EvictPage
57: if not Empty(not requested bucket) then
58: chosen bucket← not requested bucket
59: else
60: for i← Size(buckets)-1 downto 0 do
61: if not Empty(buckets[i]) then
62: chosen bucket← buckets[i]
63: brake
64: page← BucketPopPage(bucket)
65: Evict(page)

Figure 9: Implementation of the Predictive Buffer Manager

group of pages whose priorities are the lowest or almost the
lowest. To enable that, PBM partitions pages into buckets
depending on their expected time of consumption. In more
detail, the PBM buckets are organized in a timeline, where
each bucket represents a time range, and consecutive buckets
are grouped in bucket groups. Within a bucket-group, all
buckets have the same time range length; and this length
increases exponentially for each further bucket group. At
the end of the timeline there is a ,,not requested” bucket,
which is used to store pages that are not registered by any



Figure 10: PBM buckets

scans i.e. page.consuming scans is empty. The start of the
timeline represents the current moment.

Figure 10 depicts some ,,requested buckets” and the re-
lation between bucket number and time range. In general,
PBM uses n groups of m buckets each, where the length
of each range doubles in each successive group. Thus, for
a time range [0, max time] it is sufficient to create

dlog2(
max time

m
)e

groups. The first group represents the shortest range whose
length equals time slice constant. In the example depicted
in Figure 10 n=m=2 and time slice=100ms.

When the next consumption time of a page is calculated
by PageNextConsumption(), it is placed in one of the above-
mentioned buckets, by the PagePush() function, that uses
a static index accessed with the TimeToBucketNumber() func-
tion, so translating time to bucket number is an O(1) op-
eration. Buckets are implemented as doubly-linked lists, so
add and remove operations are also O(1).

The eviction algorithm implemented in the EvictPage()

function first tries to evict pages belonging to the ,,not re-
quested” bucket i.e. the pages that will not be accessed
by currently working queries. If that is impossible, PBM
starts evicting pages from requested buckets starting from
the highest numbers i.e. the ones with the highest estimated
time of next consumption.

The buckets holding requested pages become outdated as
the time passes. Thus, after time slice time passes, the
numbers of buckets need to adjusted. This process is per-
formed by RefreshRequestedBuckets(). It involves shifting
buckets left depending on their length and current time. A
certain bucket is moved by one position if the time that
passed since it was last moved equals the length of the time
range of the bucket. Since RefreshRequestedBuckets() is al-
ways called after time slice time passes, it is sufficient to
check if the time passed variable used as a time counter is
divisible by bucket length. Also, if a bucket is shifted to a
different group, its length needs to be divided by 2. The first
loop of RefreshRequestedBuckets() shifts buckets according
to that rule and updates their lengths. Positions that were
left empty are filled with new buckets in the subsequent loop.
The first bucket is shifted to position -1 (buckets[−1]). If
predictions were accurate it should already be empty. If
that is not the case, priorities of blocks belonging to it are
recalculated and the bucket is destroyed.

PBM/LRU. PBM emulates the OPT algorithm quite closely
for all paging decisions considering large tables that are be-
ing scanned. However, it does not have information on fu-
ture queries. In our current implementation, therefore, we
organize the pages in the last bucket (,,not requested”) in
LRU fashion as a doubly-linked list, as usual for LRU.

This simple solution, however, treats pages that are cur-
rently not of interest to a Scan as always having a lower

priority than those who are. Note that e.g. pages that are
very frequently used by short-running scans, would thus be
penalized, at those times that these short-running queries
do not run (i.e. most of the time). In analytical workloads,
this will happen for small (dimension) tables: despite be-
ing frequently accessed, PBM will evict their pages and I/O
will be needed for them, which could be avoided. The per-
formance impact of this is not large, though, as small tables
contribute little I/O to the overall workload.

The issue of reconciling PBM with small queries is more
relevant for mixed workloads, where parts of the data are
accessed in OLTP fashion, and parts in OLAP fashion. We
now outline an idea to deal with such situations, creating
an algorithm with two sets of counter-rotating buckets. The
idea is that there would be two sets of bucket groups:

• the PBM buckets of registered scans as described be-
fore, which one might depict above the timeline, which
move to the left as time passes by, and

• the LRU buckets containing pages not of interest to an
active scan, which one might depict below the timeline,
which move to the right (aging).

Thus, instead of moving pages which are no longer use-
ful for any Scan to the last bucket as basic PBM does,
this PBM/LRU algorithm moves them into the LRU bucket
corresponding to an estimated time of next consumption,
based on observed usage frequency over a history of multi-
ple queries. This estimate could for instance be created by
keeping for each page the timestamps of the last four uses,
and taking the average distance between them.

Each time slice interval, the PBM buckets are moved to
the left as described before, and highly similarly, LRU buck-
ets are moved right (aging). Thus, for cached pages with-
out an active scan, PBM/LRU estimates the next-time-of-
consumption based on past history and applies aging by
gradually moving them to the right side, using a rationale
similar to LRU.

The eviction algorithm starts from the last buckets of both
the LRU and PBM sets, first evicting pages in the LRU
bucket; and if more is needed evicting pages from the PBM
bucket of the same time range; moving left in time itera-
tively, if more pages need to be evicted.

We leave implementation of this algorithm as future work,
and remark that it would best be evaluated in a database
system other than Vectorwise, targeted at such a mixed
workloads and providing proper indexing structures (such
as secondary indices) for those. Our evaluation inside Vec-
torwise purely focuses on analytical workloads.

4. EVALUATION
We evaluate the various concurrent scan approaches on

the same set of synthetic microbenchmarks used when the
original Cooperative Scans were proposed [21], but supple-
ment these with a throughput run on TPC-H 30GB as gen-
erated by its qgen tool, which subjects the system to con-
current query streams.

Our Linux test server is equipped with two 4-core Intel
Xeon X5560 processors, 48 GB or RAM and 16 Intel X-25
SSDs in software RAID-0 on five SATA controllers, deliver-
ing well over 2GB/s of sequential bandwidth. This repre-
sents the upper end of what is possible in a local attached
I/O subsystem, and in our experience typical customer con-
figurations tend to be provisioned much lower. To simulate



Figure 11: Microbenchmark results,
varying the buffer pool size

Figure 12: Microbenchmark results,
varying the I/O bandwidth

Figure 13: Microbenchmark results,
varying the number of streams

slower I/O configurations, in certain experiments we arti-
ficially slow down the bandwidth by limiting the rate of
delivering pages from the storage layer of Vectorwise to the
buffer manager. This allows us to test the algorithms on
an I/O subsystem that provides bandwidth in a range from
200MB/s to 2GB/s. In all benchmarks we maximally ex-
ploit CPU power by enabling intra-query parallelism (see
Section 2.2) with maximum number of threads per query
set to 8.

In our experiments we compare traditional buffer man-
agement (LRU) with Cooperative Scans (CScans), Predic-
tive Buffer Management (PBM) and OPT. To simulate the
OPT algorithm, we gathered a trace of all page references
that were made in the PBM run. We chose PBM as it is
a scan order-preserving policy, and is designed to generate
an I/O sequence closest to a scenario where we could pre-
cisely predict order and time of all page references. We
then run an OPT simulator on this trace, and report the
I/O volume caused by this. It should be stressed that in
a dynamic environment every factor has influence on the
final result. In particular, the trace would be different if
we generated it against a policy having knowledge of future
queries. The comparison with OPT is intended to get an
idea of the optimal I/O volume of order-preserving policies
(PBM, LRU) and to compare this with non-order-preserving
policies (CScans).

4.1 Microbenchmarks
The microbenchmarks similar to those used in [21] are

based on TPC-H queries Q1 and Q6, that scan the largest
table (lineitem), performing selection, projection and aggre-
gation. We parametrize each query with a tuple range that
starts at a random position. The percentage of table size
that is scanned in one range-scan is at chosen from the set
{1%, 10%, 50%, 100%}. We run between 1 and 32 concur-
rent streams of query batches consisting of 16 queries. We
explore three dimensions: size of the buffer pool, number of
concurrent streams and I/O hardware bandwidth. As per-
formance measure, the average stream time and total vol-
ume of performed I/O are used. Unless stated otherwise, in
all benchmarks the following default parameters are used:
8 concurrent streams, buffer pool capacity equal to 40% of
accessed data volume and I/O bandwidth of 700 MB/s.

Buffer pool size. The efficiency of a buffer management
policy becomes more important as the volume of accessed
data grows. We therefore vary the the buffer pool size to
simulate growing datasets, from 10% to 100% of the total
volume of data accessed by queries (ca.1550MB).

Figure 11 depicts the results. Lowering the size of the
buffer pool below 100% immediately results in a higher I/O
volume. The growth of I/O volume is distinctly highest for
LRU. In case of LRU, the user-perceived performance starts
to deteriorate significantly with buffer pool sizes lower than
80% of the data size, as the system is CPU-bound up to
this point. PBM and CScans provide nearly constant per-
formance for buffer pools holding 40% of data and higher.
For very low buffer pool sizes, PBM and CScans start to di-
verge. Especially for a 10% buffer pool, PBM performance
drops to the level of LRU. Cooperative Scans perform well
even on very small buffer pools, because they have an abil-
ity to synchronize scans, which results in maximizing buffer
reuse. This is not possible for PBM, which ends up with
many scans scattered across the table. As a consequence,
PBM has no possibility to increase buffer reuse.

The results of OPT place in between CScans and PBM.
Since OPT does not change the order of page references,
its performance deteriorates for very small buffer pools just
like PBM. The fact that the order-preserving OPT is clearly
beaten when the order-preserving assumption is dropped
(CScans), is food for thought about proven optimality vs.
implicit assumptions.2

I/O bandwidth. We now check how the speed of the
underlying I/O subsystem influences overall performance.
Figure 12 depicts system performance measured by average
stream time and total I/O volume. It is clear that I/O band-
width strongly influences execution time. The difference be-
tween PBM and CScans disappears if bandwidth exceeds
about 1GB/s, while the difference between LRU and others
roughly disappears for 2GB/s and more. This is the point
where the system becomes CPU bound. However, the total
I/O volume remains approximately constant for all policies.
It turns out that lowering the rate of page delivery slows
down the query execution in a way that causes in-order page

2If we would use the CScans I/O trace to run OPT, its
performance would have been equal or better than CScans.



Figure 14: TPC-H throughput results,
varying the buffer pool size

Figure 15: TPC-H throughput results,
varying the I/O bandwidth

Figure 16: TPC-H throughput results,
varying the number of streams

Figure 17: Sharing potential in microbenchmarks Figure 18: Sharing potential in TPC-H throughput

references only. Consequently, similar decisions are made by
all scan-optimizing buffer management policies.

Number of streams. Increasing the number of concur-
rent streams creates an opportunity to reuse the same page
many times. However, it also results in more I/O requests
being executed, possibly more scattered across the table,
which makes it harder to exploit this opportunity. To make
streams more homogeneous, we use a mix of Q01 and Q06
queries, all scanning 50% percent of the table starting at
a random position. Figure 13 depicts benchmark results
with the number of streams varying from 1 to 32. Both av-
erage stream time and total I/O increase in similar fashion
with growing number of concurrent streams. Both PBM and
CScans cope much better in experiments using more than
4 streams, confirming their usefulness in highly concurrent
workloads.

4.2 TPC-H
The microbenchmarks only access a single table (lineitem).

To evaluate the performance in more complex scenarios, we
use the TPC-H throughput benchmark. The TPC-H experi-
ments use the same 30GB scale factor as in the microbench-
marks.3 It should be noted that that the TPC-H throughput
run is much more complex than the microbenchmarks de-
scribed in Section 4.1. The TPC-H schema consists of eight
tables with 61 columns in total. The query set contains
22 queries with a high degree of complexity, typically more

3These results are reported for academic interest only, have
not been audited and are not official TPC-H scores.

CPU intensive than the ones from the microbenchmarks. As
a result, in the graphs we choose to depict results with a de-
fault I/O bandwidth of 600MB/s, and a default buffer pool
size of 2250MB, which is 30% of the total volume of data
accessed by all queries with 8 streams (ca.7500MB).

Buffer pool size. Figure 14 shows that a smaller buffer
pool results in a higher I/O volume and execution time.
The system is I/O bound for buffer pools smaller than 60%
of data volume. With larger buffer pools, CPU work is the
bottleneck, as the average stream time remains constant re-
gardless of the buffer size. Two differences in comparison to
Figure 11 can be observed. First, the gap between CScans
and PBM is lower: PBM achieves performance similar to
CScans for all buffer pool sizes. Secondly, there is no strong
degradation for PBM in case of a 10% buffer pool.

I/O bandwidth. As presented in Figure 15, lowering the
I/O bandwidth in TPC-H experiments results in higher ex-
ecution time, whereas the volume of I/O remains constant.
Again, in case of TPC-H we observe the performance of
PBM and CScans to be almost equal. The difference be-
tween all buffer management policies is eliminated when the
I/O subsystem delivers 1200MB/s or more. This proves that
the TPC-H workload becomes CPU-bound in more cases
than the microbenchmarks described in Section 4.1.

Number of streams. Figure 15 confirms the advantage
of PBM and CScans to be increasing for workloads with
more concurrent streams. Maximally 24 streams could be
executed on the server with 48 GB or RAM. Despite the fact



that the streams were not homogeneous (i.e. used different
queries scanning different parts of different tables) a pattern
similar to the experiment in Figure 13 is observed.

Sharing potential. To understand the performance results
better, we provide an analysis of the sharing potential. In
a system loaded with concurrently working queries, at any
moment in time, one can count for each page how many
active scans still want to consume it. Thus, one can compute
the volume of data that is needed at some moment by only
one scan, exactly two scans etc.

The result of this analysis is depicted in Figures 17 and 18.
The green area indicates the amount of data that is needed
by a single scan, thus is unlikely to be reusable by another
query. The area marked with red represents the data that
is needed by 4 or more scans working in the system at some
moment. We see a clear difference between the microbench-
marks versus the TPC-H throughput run: the former has
much more reuse potential than the latter. During the exe-
cution of the microbenchmark we find large volumes of data
useful to two or more Scan operators. On the other hand,
in the TPC-H experiment, green area dominates the graph
i.e. most of the data is going to be requested and processed
by only one scan.

We conclude that the performance benefit that PBM and
CScans achieve over simple policies like LRU strongly de-
pends on the sharing potential.

Overall Trends. In the microbenchmark, which was de-
signed to provide many I/O sharing opportunities, we see
that both CScans and PBM provide significant benefits. In
TPC-H there are still significant differences between LRU
on the one hand and CScans and PBM, though the smaller
reuse opportunities in this workload make the advantage of
CScans over PBM really small. The only situation where
PBM is clearly inferior to CScans, is the combination of ex-
treme memory pressure (10% of the working set or less) and
many reuse opportunities (microbenchmarks).

In the OPT simulation we observe a consistent trend. The
results of OPT tend to be worse than results of Cooper-
ative Scans in microbenchmarks, whereas they are better
than Cooperative Scans in TPC-H. This observation can be
explained by the higher complexity and lower sharing po-
tential in TPC-H. Indeed, a more complex workload is less
predictable, thus it is harder for CScans to make the right
decisions based on the knowledge of the active queries. At
the same time, the lower sharing potential reduces opportu-
nities of out-of-order delivery used by CScans.

5. DISCUSSION
The paper started reporting on our project to make Co-

operative Scans a full feature of the Vectorwise analytical
database system. We think that we identified all major
challenges and ways to address them. Further steps to fully
complete the code have been mentioned in Section 2 as:

• a tighter integration with multi-core parallelism such
that chunks can get assigned dynamically to different
threads, rather than using static range partitioning.

• the development of a tight integration between tradi-
tional buffer management and CScans, so that queries
could still use the traditional Scan operator, if the
chunk granularity is too coarse.

While working on this latter point, we came upon Predictive
Buffer Management, which turned out to be a much simpler
solution to the problem of concurrent scans than CScans;
that achieves almost the same benefits.

When considering the adoption of a new technique in a
production system, not only the benefits it provides in the
intended use case, but all its interaction with the rest of
the system in all use cases, as well as issues like software
complexity and reliability weigh in. As such, the choice to
adopt PBM instead of CScans was a clear-cut decision, and
it will become available in Vectorwise version 2.5.

As for the current state of PBM, we identified in Section 3
the following topics for future work:

• a more elaborate integration of buffer management
across multiple queries (LRU) with the PBM frame-
work. Currently, pages that will be requested by an ac-
tive scan are prioritized over other pages. The sketched
PBM/LRU algorithm addresses this issue, but needs
further experimentation.

• improvements in PBM to address its weakpoint: ex-
treme memory pressure in a workload with a lot of
sharing potential (see Section 4), without compromis-
ing the simple architectural characteristics of PBM.

Regarding the latter point, the benchmark results in Fig-
ure 11 suggest that the performance of the PBM drops when
the systems is using a very small buffer pool with many
queries scanning at different positions of the table. In such
a scenario PBM is not able to exploit sharing opportunities
because it needs to deliver data in-order. We now shortly
discuss two possible directions for improvement:

PBM Attach & Throttle. We could introduce circular-
scan techniques into PBM, by allowing an incoming Scan

to ,,attach” to already running Scans to make them share
loaded data. This could be enhanced further along the
lines of [13, 14] by throttling some queries, so that groups
of queries scanning at close positions are formed. The algo-
rithm that forms groups of queries can be extended to take
information used by the PBM into account. Suppose the
PBM keeps track of the next consumption time of pages that
were lastly evicted from the buffer pool. Let us denote it
by next consumption evict. A page whose next consumption
time is higher or close to next consumption evict is likely to
be evicted without being reused. In PBM, every page that
has just been consumed is assigned a new next consumption
time. By comparing it to next consumption evict, we can
detect whether the consumed page is likely to be evicted or
reused again. A Scan can be throttled if this would lower
the next consumption time of pages it recently consumed
to a value below next consumption evict. This would allow
Scans working behind this particular Scan to catch up and
benefit from pages loaded for the throttled Scan.

Opportunistic Scans in PBM. The Cooperative Scans
framework assumes that all loading and eviction decisions
are strictly managed by the Active Buffer Manager on chunk-
at-a-time basis. This assumption makes the implementation
more difficult as ABM needs to manage the global system
state as well as all transaction states to provide consistent
data access. A simpler approach to benefit from out-of-
order delivery would be if the Scan itself would dynamically
change the area in a table that is processed by a certain



query, depending on the actual state of the buffer pool,
without centralized planning. The Scan operator could con-
stantly monitor which parts of the scanned table contain
most cached pages. When a certain region of a table that
is cached to a large extent is detected, the Scan could dy-
namically change the range to scan that region and possibly
increase the number of times those pages are reused before
being evicted. That way, Scans may automatically ,,attach”
and cooperate.

6. RELATED WORK
Disk scheduling policies have been studied at length in op-

erating systems research [16]. The classic policies developed
include First Come First Served, Shortest Seek Time First,
SCAN, LOOK and others. Also, in the area of virtual mem-
ory [1] and file system caching policies there were several
policies introduced including LRU and MRU. It should be
noted that the developed policies were aimed at access pat-
terns and workloads different from the ones found in an an-
alytical DBMS, where we have more knowledge of the work-
load and also computationally more expensive algorithms
can be used for scheduling.

In a DBMS it is possible to identify several access patterns
depending on the type of a query and used indices such as
looping sequential, straight sequential and random [4]. De-
pending on the access pattern, a different buffer manage-
ment policy may be used. In [4] and subsequent work [3, 6]
scans were considered trivial and handled by either LRU or
MRU policy. In such case concurrently working scans were
not exploiting sharing opportunities.

The idea of developing policies aimed at increasing data
reuse in an environment with multiple concurrent scans was
introduced in commercial DBMS systems including Tera-
data, RedBrick [7] and Microsoft SQLServer [5]. The pro-
posed solutions used either the elevator or attach policy that
were compared to Cooperative Scans in [21].

The idea of circular scans is exploited in systems that are
designed to handle a highly concurrent workload with tens
to hundreds of queries. The main purpose for using this
technique is to maintain high performance of the system ir-
respectively of the number of concurrent queries. The Cres-
cando system [8,17] introduces Clock Scan where one thread
services all queries working in the system. The QPipe archi-
tecture [10] is another example of a system using a circular
scan that feeds multiple operators with data.

Another approach for improving data reuse in a multi-scan
environment was introduced in IBM DB2 system [13, 14].
The idea is to group scans with similar speed and position
together to let them reuse loaded data. The groups are con-
trolled by allowing throttling of faster queries or recreating
the groups if a considerable desynchronization occurs. In
principle, this approach changes the access pattern to in-
crease locality of references, but does not change the order
of processing, nor the buffer management policy.

Under the assumption that full information about all fu-
ture page accesses is known, it is possible to formulate an
optimal algorithm i.e. an algorithm that minimizes the num-
ber of pages that have to loaded from disk to the buffer. The
OPT algorithm [1] (also called MIN, Clairvoyant or Belady’s
Algorithm) governs a buffer provided a sequence of all future
references is available. A short proof of optimality of OPT
can be found in [15]. The Predictive Buffer Manager that we
present in Section 3 is based on the idea of approximating
the OPT algorithm.

7. CONCLUSIONS
In this paper we reported on the experiences in turning the

Cooperative Scans (CScans) framework [21] from a research
prototype into a product feature. This posed a number of
challenges, as the Active Buffer Manager (ABM), central
to the CScans framework, manipulates global system state
and interacts with many other components of the database
system. Concretely, we had to work on properly handling
transactional updates (both bulk and trickle), multi-core
parallelism, and the integration of CScans with the tradi-
tional buffer manager. While all these challenges were met,
CScans have not yet been fully integrated into a product.
The reason was the invention of a much simpler extension
to traditional buffer management, called Predictive Buffer
Management (PBM). This new technique turned out to pro-
vide benefits similar to CScans, while requiring much less
disruption to the system architecture. The main idea behind
PBM is that, in analytical workloads, careful monitoring of
active table scans gives the system an opportunity to predict
the future page accesses. As such, PBM is an approxima-
tion of the optimal I/O scheduling algorithm OPT [1], which
exploits such, usually unattainable, advance knowledge.

We believe that PBM is a great addition to the family of
database buffer management policies, and we have outlined
various avenues of its future improvement. We also hope
that the story of CScans inspires researchers in academia
to evaluate innovations not only in terms of absolute per-
formance benefits, but also other criteria, such as software
complexity and intrusiveness to system architecture (less is
more!).

8. REFERENCES
[1] L. A. Belady. A study of replacement algorithms for a

virtual-storage computer. IBM Sys. Journal, 5, 1966.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,
and P. O’Neil. A critique of ansi sql isolation levels.
SIGMOD Record, 24, 1995.

[3] C.-M. Chen and N. Roussopoulos. Adaptive database
buffer allocation using query feedback. In VLDB, 1993.

[4] H.-T. Chou and D. J. DeWitt. An evaluation of buffer
management strategies for relational database systems. In
VLDB, 1985.

[5] C. Cook. Database Architecture: The Storage Engine, July
2001. http://msdn.microsoft.com/library.

[6] C. Faloutsos, R. T. Ng, and T. K. Sellis. Predictive load
control for flexible buffer allocation. In VLDB, 1991.

[7] P. M. Fernandez. Red brick warehouse: a read-mostly
rdbms for open smp platforms. SIGMOD Record, 23, 1994.

[8] G. Giannikis, P. Unterbrunner, J. Meyer, G. Alonso,
D. Fauser, and D. Kossmann. Crescando. In SIGMOD,
2010.

[9] G. Graefe. Encapsulation of parallelism in the volcano
query processing system. In Proceedings of the 1990 ACM
SIGMOD international conference on Management of
data, SIGMOD, 1990.

[10] S. Harizopoulos, V. Shkapenyuk, and A. Ailamaki. Qpipe:
a simultaneously pipelined relational query engine. In
SIGMOD, 2005.

[11] S. Héman, M. Zukowski, N. J. Nes, L. Sidirourgos, and
P. Boncz. Positional update handling in column stores. In
SIGMOD, 2010.

[12] D. Inkster, P. Boncz, and M. Zukowski. Integration of
VectorWise with Ingres. SIGMOD Record, 40(3), 2011.

[13] C. A. Lang, B. Bhattacharjee, T. Malkemus,
S. Padmanabhan, and K. Wong. Increasing buffer-locality
for multiple relational table scans through grouping and
throttling. In ICDE, 2007.

http://msdn.microsoft.com/library


[14] C. A. Lang, B. Bhattacharjee, T. Malkemus, and K. Wong.
Increasing buffer-locality for multiple index based scans
through intelligent placement and index scan speed control.
In VLDB, 2007.

[15] B. V. Roy. A short proof of optimality for the min cache
replacement algorithm. Technical report, Stanford
University, December 2010.

[16] T. J. Teorey and T. B. Pinkerton. A comparative analysis
of disk scheduling policies. In SOSP, 1971.

[17] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser, and
D. Kossmann. Predictable performance for unpredictable
workloads. PVLDB, 2, 2009.

[18] Vectorwise. http://www.actian.com/vectorwise.

[19] M. Zukowski and P. Boncz. Vectorwise: Beyond Column
Stores. IEEE DEBULL, 35(1), 2012.

[20] M. Zukowski, P. A. Boncz, N. J. Nes, and S. Heman.
Monetdb/X100 - A DBMS In The CPU Cache. IEEE
DEBULL, 28(2), 2005.

[21] M. Zukowski, S. Héman, N. Nes, and P. Boncz.
Cooperative scans: dynamic bandwidth sharing in a dbms.
In VLDB, 2007.

http://www.actian.com/vectorwise

	Introduction
	Maturing Cooperative Scans
	Updates
	Parallelism
	Scan/CScan Coexistence

	Predictive Buffer Management
	Evaluation
	Microbenchmarks
	TPC-H

	Discussion
	Related work
	Conclusions
	References

