1,251 research outputs found
Transformation of electromagnetically induced transparency into absorption in a thermal potassium optical cell with spin preserving coating
We report a new experimental approach where an order of magnitude enhancement of the electromagnetically induced absorption (EIA) resonance contrast, thus making it similar to that of the EIT resonance contrast is observed under the same conditions. The EIA signal results from the interaction of a weak probe beam with a ground state that has been driven by the pump (counter-propagating) beam. Probe absorption spectra are presented where the laser frequency is slowly detuned over the D 1 line of 39 K vapor contained in a cell with a PDMS antirelaxation coating. In addition to the frequency detuning, a magnetic field orthogonal to the laser beams is scanned around zero value at a higher rate. With both laser beams linearly polarized, an EIT resonance is observed. However, changing the pump beam polarization from linear to circular reverses the resonance signal from EIT to EIA
Stationary entanglement between two movable mirrors in a classically driven Fabry-Perot cavity
We consider a Fabry-Perot cavity made by two moving mirrors and driven by an
intense classical laser field. We show that stationary entanglement between two
vibrational modes of the mirrors, with effective mass of the order of
micrograms, can be generated by means of radiation pressure. The resulting
entanglement is however quite fragile with respect to temperature.Comment: 15 pages, 3 figure
Conversion of bright magneto-optical resonances into dark at fixed laser frequency for D2 excitation of atomic rubidium
Nonlinear magneto-optical resonances on the hyperfine transitions belonging
to the D2 line of rubidium were changed from bright to dark resonances by
changing the laser power density of the single exciting laser field or by
changing the vapor temperature in the cell. In one set of experiments atoms
were excited by linearly polarized light from an extended cavity diode laser
with polarization vector perpendicular to the light's propagation direction and
magnetic field, and laser induced fluorescence (LIF) was observed along the
direction of the magnetic field, which was scanned. A low-contrast bright
resonance was observed at low laser power densities when the laser was tuned to
the Fg=2 --> Fe=3 transition of Rb-87 and near to the Fg=3 --> Fe=4 transition
of Rb-85. The bright resonance became dark as the laser power density was
increased above 0.6mW/cm2 or 0.8 mW/cm2, respectively. When the Fg=2 --> Fe=3
transition of Rb-87 was excited with circularly polarized light in a second set
of experiments, a bright resonance was observed, which became dark when the
temperature was increased to around 50C. The experimental observations at room
temperature could be reproduced with good agreement by calculations based on a
theoretical model, although the theoretical model was not able to describe
measurements at elevated temperatures, where reabsorption was thought to play a
decisive role. The model was derived from the optical Bloch equations and
included all nearby hyperfine components, averaging over the Doppler profile,
mixing of magnetic sublevels in the external magnetic field, and a treatment of
the coherence properties of the exciting radiation field.Comment: 9 pages, 7 figure
Continuous variable entanglement by radiation pressure
We show that the radiation pressure of an intense optical field impinging on
a perfectly reflecting vibrating mirror is able to entangle in a robust way the
first two optical sideband modes. Under appropriate conditions, the generated
entangled state is of EPR type [A. Einstein, {\it et al.}, Phys. Rev. {\bf 47},
777 (1935)].Comment: 11 pages, 3 figure
Optical response of a misaligned and suspended Fabry-Perot cavity
The response to a probe laser beam of a suspended, misaligned and detuned
optical cavity is examined. A five degree of freedom model of the fluctuations
of the longitudinal and transverse mirror coordinates is presented. Classical
and quantum mechanical effects of radiation pressure are studied with the help
of the optical stiffness coefficients and the signals provided by an FM
sideband technique and a quadrant detector, for generic values of the product
of the fluctuation frequency times the cavity round trip. A
simplified version is presented for the case of small misalignments. Mechanical
stability, mirror position entanglement and ponderomotive squeezing are
accommodated in this model. Numerical plots refer to cavities under test at the
so-called Pisa LF facility.Comment: 14 pages (4 figures) submitted to Phys. Rev.
A large sample study of spin relaxation and magnetometric sensitivity of paraffin-coated Cs vapor cells
We have manufactured more than 250 nominally identical paraffin-coated Cs
vapor cells (30 mm diameter bulbs) for multi-channel atomic magnetometer
applications. We describe our dedicated cell characterization apparatus. For
each cell we have determined the intrinsic longitudinal, \sGamma{01}, and
transverse, \sGamma{02}, relaxation rates. Our best cell shows
\sGamma{01}/2\pi\approx 0.5 Hz, and \sGamma{02}/2\pi\approx 2 Hz. We find a
strong correlation of both relaxation rates which we explain in terms of
reservoir and spin exchange relaxation. For each cell we have determined the
optimal combination of rf and laser powers which yield the highest sensitivity
to magnetic field changes. Out of all produced cells, 90% are found to have
magnetometric sensitivities in the range of 9 to 30 fTHz. Noise analysis shows
that the magnetometers operated with such cells have a sensitivity close to the
fundamental photon shot noise limit
Entangling macroscopic oscillators exploiting radiation pressure
It is shown that radiation pressure can be profitably used to entangle {\it
macroscopic} oscillators like movable mirrors, using present technology. We
prove a new sufficient criterion for entanglement and show that the achievable
entanglement is robust against thermal noise. Its signature can be revealed
using common optomechanical readout apparatus.Comment: 4 pages, 2 eps figures, new separability criterion added, new figure
2, authors list change
Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure
We study an isolated, perfectly reflecting, mirror illuminated by an intense
laser pulse. We show that the resulting radiation pressure efficiently
entangles a mirror vibrational mode with the two reflected optical sideband
modes of the incident carrier beam. The entanglement of the resulting
three-mode state is studied in detail and it is shown to be robust against the
mirror mode temperature. We then show how this continuous variable entanglement
can be profitably used to teleport an unknown quantum state of an optical mode
onto the vibrational mode of the mirror.Comment: 18 pages, 10 figure
- …
