3,160 research outputs found

    Berry Curvature in Graphene: A New Approach

    Full text link
    In the present paper we have directly computed the Berry curvature terms relevant for Graphene in the presence of an \textit{inhomogeneous} lattice distortion. We have employed the generalized Foldy Wouthuysen framework, developed by some of us \cite{ber0,ber1,ber2}. We show that a non-constant lattice distortion leads to a valley-orbit coupling which is responsible to a valley-Hall effect. This is similar to the valley-Hall effect induced by an electric field proposed in \cite{niu2} and is the analogue of the spin-Hall effect in semiconductors \cite{MURAKAMI, SINOVA}. Our general expressions for Berry curvature, for the special case of homogeneous distortion, reduce to the previously obtained results \cite{niu2}. We also discuss the Berry phase in the quantization of cyclotron motion.Comment: Slightly modified version, to appear in EPJ

    From Feynman Proof of Maxwell Equations to Noncommutative Quantum Mechanics

    Full text link
    In 1990, Dyson published a proof due to Feynman of the Maxwell equations assuming only the commutation relations between position and velocity. With this minimal assumption, Feynman never supposed the existence of Hamiltonian or Lagrangian formalism. In the present communication, we review the study of a relativistic particle using ``Feynman brackets.'' We show that Poincar\'e's magnetic angular momentum and Dirac magnetic monopole are the consequences of the structure of the Lorentz Lie algebra defined by the Feynman's brackets. Then, we extend these ideas to the dual momentum space by considering noncommutative quantum mechanics. In this context, we show that the noncommutativity of the coordinates is responsible for a new effect called the spin Hall effect. We also show its relation with the Berry phase notion. As a practical application, we found an unusual spin-orbit contribution of a nonrelativistic particle that could be experimentally tested. Another practical application is the Berry phase effect on the propagation of light in inhomogeneous media.Comment: Presented at the 3rd Feynman Festival (Collage Park, Maryland, U.S.A., August 2006

    Spin Hall effect of Photons in a Static Gravitational Field

    Full text link
    Starting from a Hamiltonian description of the photon within the set of Bargmann-Wigner equations we derive new semiclassical equations of motion for the photon propagating in static gravitational field. These equations which are obtained in the representation diagonalizing the Hamiltonian at the order â„Ź\hbar , present the first order corrections to the geometrical optics. The photon Hamiltonian shows a new kind of helicity-magnetotorsion coupling. However, even for a torsionless space-time, photons do not follow the usual null geodesic as a consequence of an anomalous velocity term. This term is responsible for the gravitational birefringence phenomenon: photons with distinct helicity follow different geodesics in a static gravitational field.Comment: 6 page
    • …
    corecore