University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Conservation and Survey Division

Natural Resources, School of

1996

Regional Hydrogeologic Summaries from Domestic Well-water Quality in Rural Nebraska -- Missouri River Lowlands

D. C. Gosselin University of Nebraska - Lincoln

J. Headrick

X-H. Chen

S. E. Summerside

Follow this and additional works at: https://digitalcommons.unl.edu/conservationsurvey

Part of the Geology Commons, Geomorphology Commons, Hydrology Commons, Paleontology Commons, Sedimentology Commons, Soil Science Commons, and the Stratigraphy Commons

Gosselin, D. C.; Headrick, J.; Chen, X- H.; and Summerside, S. E., "Regional Hydrogeologic Summaries from Domestic Well-water Quality in Rural Nebraska -- Missouri River Lowlands" (1996). *Conservation and Survey Division*. 773.

https://digitalcommons.unl.edu/conservationsurvey/773

This Article is brought to you for free and open access by the Natural Resources, School of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Conservation and Survey Division by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Missouri River Lowlands Hydrogeologic Summary from Domestic Well-water Quality in Rural Nebraska (A data-analysis report for the Nebraska Department of Health compiled by D. C. Gosselin and others, 1996)

Groundwater Region 3 occupies the lowlands of the Missouri River valley (fig. 1). The principal aquifer is composed primarily of Quaternary river-deposited (alluvial) sand and gravel beneath the floodplain of the Missouri River. These deposits are generally less than 100 feet thick and consist primarily of fine- to medium-grained sand and fine-grained gravel interlayered with lesser amounts of silt and clay. In some areas, deposits associated with glacial activity occur beneath the more recent river deposits; these mostly consist of clay-rich glacial till and fine- to coarse-grained sediments washed out of glaciers and/or alluvium. The glacier-related deposits occur mostly in ancient valleys (paleovalleys) that cut into bedrock under the Missouri River valley. Depth to water is usually less than 50 feet. Saturated thickness of the principal aquifer is less than 100 feet. (Geologic cross sections are available from the Conservation and Survey Division.*)

In the South Sioux City area, the Dakota Group is present beneath the alluvial and glacial deposits (table 1). In this area, the Dakota Group sandstone is used as another source of groundwater. South of Sioux City, the base of the aquifer consists of limestone and shale of Pennsylvanian age. Upstream from Sioux City, the base of the principal aquifer conforms to the surface of the Cretaceous rocks, which include the Greenhorn-Graneros, Carlile and Niobrara formations, as well as the Dakota Group.

*Cross sections for this or other regions of the state (fig. 1-Locations of geologic cross sections) are available from the Conservation and Survey Division for a small fee. The report Domestic Wellwater quality in Rural Nebraska is available from the Nebraska Department of Health and Human Services. Photocopies are available at CSD; write: Map and Publications Sales/Conservation and Survey Division/113 Nebraska Hall/University of Nebraska-Lincoln/68588-0517; or call: (402) 472-7523.

Burchett, R.R., 1965, Correlation of Formations Drilled in Test Holes for Interstate 480 Bridge between Omaha, Nebraska and Council Bluffs, Iowa: Nebraska Geological Survey Paper 17, University of Nebraska, Conservation and Survey Division, 30 p.

Conservation and Survey Division University of Nebraska-Lincoln **Institute of Agriculture and Natural Resources GIM-91**

Groundwater Region 3

Sources of Information

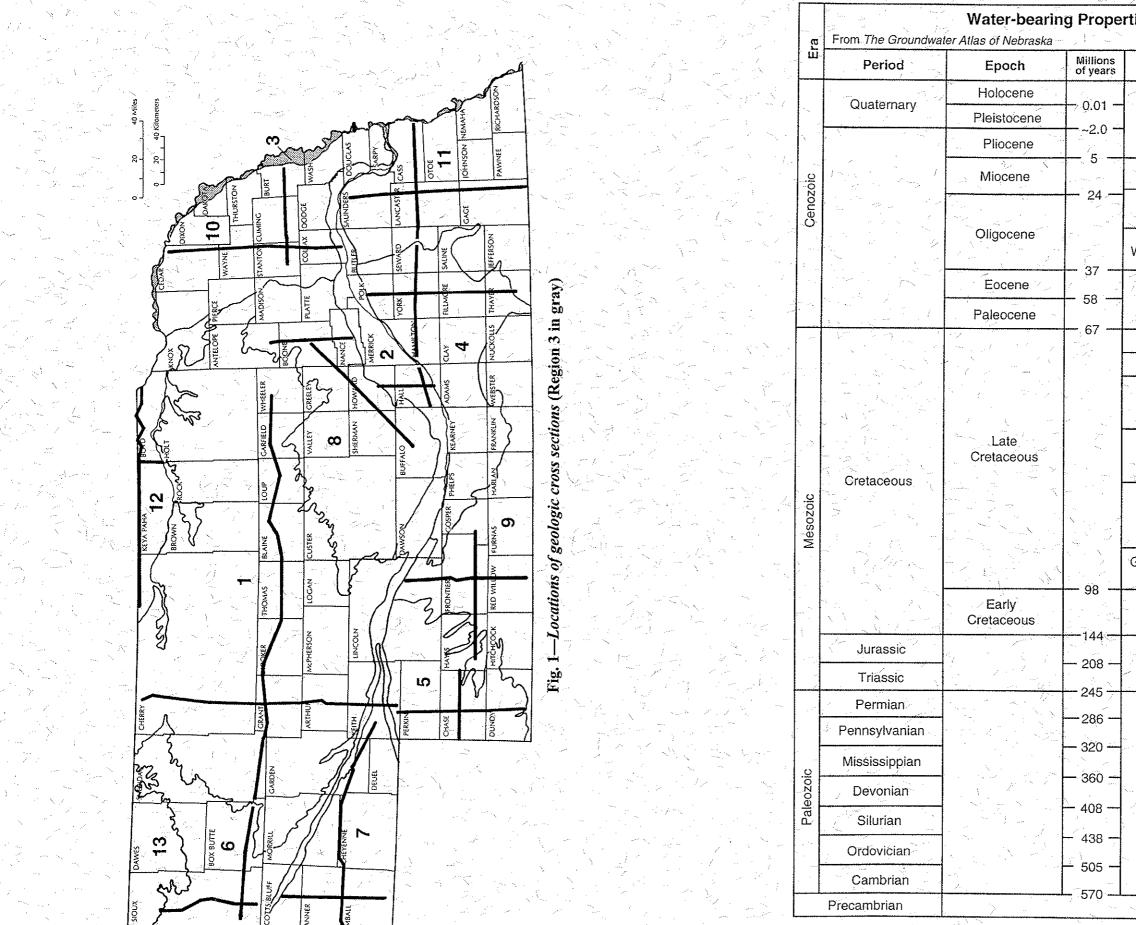
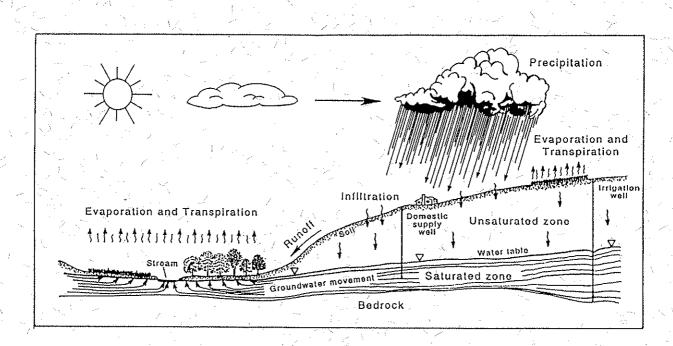


Table 1—Hydrostratigraphic chart (showing water-bearing rock units) of Nebraska Time divisions are not to scale.

Conse	rvation and Survey Divisior	, University of Nebraska-Lincolr
Group or Formation	Lithology	Water-bearing Properties
	Sand, silt, gravel and clay	
	Sand, gravel and silt	Principal groundwater reservoir Ogallala is absent in east and
Ogallala	Sand, sandstone, siltstone and some gravel	northwest. Arikaree is present primarily in west.
Arikaree	Sandstone and siltstone	
White River	Siltstone, sandstone and clay in lower part	Secondary aquifer in west; water may be highly mineralized.
	ocks of this age are not in	Received a second s
Lance		Generally not an aquifer;
Fox Hills	Sandstone and siltstone	yields water to few wells in west.
Pierre	Shale and some sandstone in west	Generally not an aquifer; sandstones in west yield highly mineralized water to few industrial wells.
Niobrara	Shaly chalk and limestone	Secondary aquifer where fractured and at shallow depths, primarily in east.
Carlile	Shale; in some areas contains sandstones in upper part	Generally not an aquifer; sandstones yield water to few wells in northeast.
Greenhorn- Graneros	Limestone and shale	Generally not an aquifer, yields water to few wells in east.
Dakota	Sandstone and shale	Secondary aquifer, primarily in east; water may be highly mineralized.
	Siltstone and some sandstone	Not an aquifer


Not an aquifer

Limestone, dolomites, shales and sandstone.

Siltstone

Some sandstone, limestone and dolomites are secondary aquifers in east. Water may be highly mineralized.

3

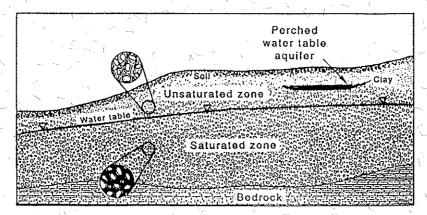


Fig. 2—Groundwater cycle and idealized cross section