38 research outputs found

    The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus

    Get PDF
    Bacterial infection of interior tissues of legume root nodules is controlled at the epidermal cell layer and is closely coordinated with progressing organ development. Using spontaneous nodulating Lotus japonicus plant mutants to uncouple nodule organogenesis from infection, we have determined the role of 16 genes in these two developmental processes. We show that host-encoded mechanisms control three alternative entry processes operating in the epidermis, the root cortex and at the single cell level. Single cell infection did not involve the formation of trans-cellular infection threads and was independent of host Nod-factor receptors and bacterial Nod-factor signals. In contrast, Nod-factor perception was required for epidermal root hair infection threads, whereas primary signal transduction genes preceding the secondary Ca2+ oscillations have an indirect role. We provide support for the origin of rhizobial infection through direct intercellular epidermal invasion and subsequent evolution of crack entry and root hair invasions observed in most extant legumes

    SrSymRK, a plant receptor essential for symbiosome formation

    No full text
    The symbiosis between legumes and rhizobia is essential for the nitrogen input into the life cycle on our planet. New root organs, the nodules, are established, which house N(2)-fixing bacteria internalized into the host cell cytoplasm as horizontally acquired organelles, the symbiosomes. The interaction is initiated by bacterial invasion via epidermal root hair curling and cell division in the cortex, both triggered by bacterial nodulation factors. Of the several genes involved in nodule initiation that have been identified, one encodes the leucine-rich repeat-type receptor kinase SymRK. In SymRK mutants of Lotus japonicus or its orthologs in Medicago sp. and Pisum sativum, nodule initiation is arrested at the level of the root hair interaction. Because of the epidermal block, the role of SymRK at later stages of nodule development remained enigmatic. To analyze the role of SymRK downstream of the epidermis, the water-tolerant legume Sesbania rostrata was used that has developed a nodulation strategy to circumvent root hair responses for bacterial invasion. Evidence is provided that SymRK plays an essential role during endosymbiotic uptake in plant cells

    Patterns of ENOD40 gene expression in stem-borne nodules of Sesbania rostrata

    No full text
    At the base of adventitious root primordia, located on the stem of the tropical legume Sesbania rostrata, nitrogen-fixing nodules are formed upon inoculation with the microsymbiont Azorhizobium caulinodans. This pattern of nodule development presents features of indeterminate and determinate nodules in early and later stages, respectively. A S. rostrata cDNA clone homologous to early nodulin ENOD40 genes was isolated from a cDNA library of developing stem nodules. SrENOD40-1 contained the conserved regions I and II of other ENOD40 genes. By reverse transcriptase PCR, enhanced SrENOD40-1 expression was observed in the adventitious root primordia between 4 and 8 h after inoculation with A. caulinodans. In situ hybridization showed that SrENOD40-1 transcripts, present around the central vascular bundle of the uninfected root primordia, were strongly enhanced upon induction of nodule development. De novo SrENOD40-1 expression was observed in the initiating and growing nodule primordia and around vascular bundles. When cell type specification sets in, the expression became pronounced in cells derived from the meristematic regions. In other parts of the plant, weak SrENOD40-1 expression was associated with vascular bundles and was observed in leaf and stipule primordi

    Srchi13, a novel early nodulin from Sesbania rostrata, is related to acidic class III chitinases.

    No full text
    On the tropical legume Sesbania rostrata, stem-borne nodules develop after inoculation of adventitious root primordia with the microsymbiont Azorhizobium caulinodans. A cDNA clone, Srchi13, with homology to acidic class III chitinase genes, corresponds to an early nodulin gene with transiently induced expression during nodule ontogeny. Srchi13 transcripts accumulated strongly 2 days after inoculation, decreased from day 7 onward, and disappeared in mature nodules. Induction was dependent on Nod factor-producing bacteria. Srchi13 was expressed around infection pockets, in infection centra, around the developing nodule and its vascular bundles, and in uninfected cells of the central tissue. The specific and transient transcript accumulation together with the lipochitooligosaccharide degradation activity of the recombinant protein hint at a role of Srchi13 in normal nodule ontogeny by limiting the action of Nod factors

    Nodulation of Aeschynomene afraspera and A. indica by photosynthetic Bradyrhizobium Sp. Strain ORS285 : the Nod-dependent versus the Nod-independent symbiotic interaction

    No full text
    Here, we present a comparative analysis of the nodulation processes of Aeschynomene afraspera and A. indica that differ in their requirement for Nod factors (NF) to initiate symbiosis with photosynthetic bradyrhizobia. The infection process and nodule organogenesis was examined using the green fluorescent protein labeled Bradyrhizohium sp. strain ORS285 able to nodulate both species. In A. indica, when the NF-independent strategy is used, bacteria penetrated the root intercellularly between axillary root hairs and invaded the subepidermal cortical cells by invagination of the host cell wall. Whereas the first infected cortical cells collapsed, the infected ones immediately beneath kept their integrity and divided repeatedly to form the nodule. In A. afraspera, when the NF-dependent strategy is used, bacteria entered the plant through epidermal fissures generated by the emergence of lateral roots and spread deeper intercellularly in the root cortex, infecting some cortical cells during their progression. Whereas the infected cells of the lower cortical layers divided rapidly to form the nodule, the infected cells of the upper layers gave rise to an outgrowth in which the bacteria remained enclosed in large tubular structures. Together, two distinct modes of infection and nodule organogenesis coexist in Aeschynomene legumes, each displaying original features
    corecore