1,225 research outputs found

    Last CPT-Invariant Hope for LSND Neutrino Oscillations

    Get PDF
    It is shown that the 99% confidence limits from the analyses of the data of cosmological and neutrino experiments imply a small marginally allowed region in the space of the neutrino oscillation parameters of 3+1 four-neutrino mixing schemes. This region can be confirmed or falsified by experiments in the near future.Comment: 6 pages, added predictions for neutrinoless double beta decay and tritium experiment

    Lepton Numbers in the framework of Neutrino Mixing

    Get PDF
    In this short review we discuss the notion of lepton numbers. The strong evidence in favor of neutrino oscillations obtained recently in the Super-Kamiokande atmospheric neutrino experiment and in solar neutrino experiments imply that the law of conservation of family lepton numbers L_e, L_mu and L_tau is strongly violated. We consider the states of flavor neutrinos nu_e, nu_mu and nu_tau and we discuss the evolution of these states in space and time in the case of non-conservation of family lepton numbers due to the mixing of light neutrinos. We discuss and compare different flavor neutrino discovery experiments. We stress that experiments on the search for nu_mu->nu_tau and nu_e->nu_tau oscillations demonstrated that the flavor neutrino nu_tau is a new type of neutrino, different from nu_e and nu_mu. In the case of neutrino mixing, the lepton number (only one) is connected with the nature of massive neutrinos. Such conserved lepton number exist if massive neutrinos are Dirac particles. We review possibilities to check in future experiments whether the conserved lepton number exists.Comment: 20 page

    Light Sterile Neutrinos and Inflationary Freedom

    Get PDF
    We perform a cosmological analysis in which we allow the primordial power spectrum of scalar perturbations to assume a shape that is different from the usual power-law predicted by the simplest models of cosmological inflation. We parameterize the free primordial power spectrum with a "piecewise cubic Hermite interpolating polynomial" (PCHIP). We consider a 3+1 neutrino mixing model with a sterile neutrino having a mass at the eV scale, which can explain the anomalies observed in short-baseline neutrino oscillation experiments. We find that the freedom of the primordial power spectrum allows to reconcile the cosmological data with a fully thermalized sterile neutrino in the early Universe. Moreover, the cosmological analysis gives us some information on the shape of the primordial power spectrum, which presents a feature around the wavenumber k=0.002 Mpc−1k=0.002\,\text{Mpc}^{-1}.Comment: 19 pages; corrected Fig.4 and added Ref.[35

    Light Sterile Neutrinos in Cosmology and Short-Baseline Oscillation Experiments

    Get PDF
    We analyze the most recent cosmological data, including Planck, taking into account the possible existence of a sterile neutrino with a mass at the eV scale indicated by short-baseline neutrino oscillations data in the 3+1 framework. We show that the contribution of local measurements of the Hubble constant induces an increase of the value of the effective number of relativistic degrees of freedom above the Standard Model value, giving an indication in favor of the existence of sterile neutrinos and their contribution to dark radiation. Furthermore, the measurements of the local galaxy cluster mass distribution favor the existence of sterile neutrinos with eV-scale masses, in agreement with short-baseline neutrino oscillations data. In this case there is no tension between cosmological and short-baseline neutrino oscillations data, but the contribution of the sterile neutrino to the effective number of relativistic degrees of freedom is likely to be smaller than one. Considering the Dodelson-Widrow and thermal models for the statistical cosmological distribution of sterile neutrinos, we found that in the Dodelson-Widrow model there is a slightly better compatibility between cosmological and short-baseline neutrino oscillations data and the required suppression of the production of sterile neutrinos in the early Universe is slightly smaller.Comment: 12 pages; final version published in JHEP 1311 (2013) 21

    Light sterile neutrinos and inflationary freedom

    Get PDF
    We perform a cosmological analysis in which we allow the primordial power spectrum of scalar perturbations to assume a shape that is different from the usual power-law predicted by the simplest models of cosmological inflation. We parameterize the free primordial power spectrum with a ``piecewise cubic Hermite interpolating polynomial'' (PCHIP). We consider a 3+1 neutrino mixing model with a sterile neutrino having a mass at the eV scale, which can explain the anomalies observed in short-baseline neutrino oscillation experiments. We find that the freedom of the primordial power spectrum allows to reconcile the cosmological data with a fully thermalized sterile neutrino in the early Universe. Moreover, the cosmological analysis gives us some information on the shape of the primordial power spectrum, which presents a feature around the wavenumber k=0.002 Mpc 121

    Dirac Spinors and Flavor Oscillations

    Full text link
    In the standard treatment of particle oscillations the mass eigenstates are implicitly assumed to be scalars and, consequently, the spinorial form of neutrino wave functions is not included in the calculations. To analyze this additional effect, we discuss the oscillation probability formula obtained by using the Dirac equation as evolution equation for the neutrino mass eigenstates. The initial localization of the spinor state also implies an interference between positive and negative energy components of mass eigenstate wave packets which modifies the standard oscillation probability.Comment: 14 pages, 1 figure, AMS-Te
    • 

    corecore