
Original Citation:

Light sterile neutrinos and inflationary freedom

IOP PUBLISHING LTD, ENGLAND
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3141132 since: 2016-05-20T15:22:02Z

10.1088/1475-7516/2015/04/023

Università degli Studi di Padova

Padua Research Archive - Institutional Repository



J
C
A
P
0
4
(
2
0
1
5
)
0
2
3

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Light sterile neutrinos and inflationary
freedom

S. Gariazzo,a,b C. Giuntib and M. Lavederc

aDepartment of Physics, University of Torino,
Via P. Giuria 1, I–10125 Torino, Italy
bINFN, Sezione di Torino,
Via P. Giuria 1, I–10125 Torino, Italy
cDipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova,
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Abstract. We perform a cosmological analysis in which we allow the primordial power spec-
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predicted by the simplest models of cosmological inflation. We parameterize the free pri-
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We consider a 3+1 neutrino mixing model with a sterile neutrino having a mass at the eV
scale, which can explain the anomalies observed in short-baseline neutrino oscillation exper-
iments. We find that the freedom of the primordial power spectrum allows to reconcile the
cosmological data with a fully thermalized sterile neutrino in the early Universe. Moreover,
the cosmological analysis gives us some information on the shape of the primordial power
spectrum, which presents a feature around the wavenumber k = 0.002 Mpc−1.
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1 Introduction

In typical analyses of cosmological data one of the main assumptions about the early Universe
is the form of the primordial power-spectrum (PPS) of scalar fluctuations. The PPS is
usually assumed to be a power-law (PL), as predicted by the simplest models of inflation
(see refs. [1–3]). However, if inflation is generated by a more complicated mechanism, the
PPS can assume a different shape or present various features with respect to the power-law
form (see refs. [4, 5] and references therein). Since we cannot test directly the physics at the
scale of cosmological inflation in order to check the correctness of the simplest inflationary
models, any cosmological analysis performed assuming a power-law PPS can suffer of a
biased constraint.

The cosmological observable that we can access is the late-time power spectrum of
scalar perturbations, which is a convolution of the PPS and the transfer function, that can
be calculated numerically as a function of a small number of cosmological parameters. Several
experiments are designed to measure the late-time power spectrum at different redshifts (see
refs. [6–8]).

The physics of the transfer function is well understood and the experiments that measure
the Cosmic Microwave Background (CMB) radiation give very strong constraints on the
values of the cosmological parameters which determine the transfer function. The current
most precise measurements of the angular power spectrum of the CMB are those of the
Planck experiment [9] for the unpolarized data and those of the WMAP experiment [10]
for the polarization spectra. However, the next Planck data release is expected to improve
the current sensitivity on the unpolarized spectra and to include the new polarized spectra
obtained by Planck.

On the other hand, since the inflationary scale cannot be directly tested, we can only
try to reconstruct indirectly the PPS. In the literature there are several approaches for recon-
structing a completely unknown PPS given the available experimental data. Among them
we can list the “cosmic inversion” methods [11–15], maximum entropy deconvolution [16]
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and regularization methods like Richardson-Lucy iteration [17–20], truncated singular value
decomposition [21] and Tikhonov regularization [22].

The effects on cosmological parameter estimation of considering a PPS which is different
from a power-law has been studied in several works: for example, the power-law PPS has
been simply modified with the introduction of a running in the tilt of the power-law [23–26], a
running of the running [27], or a sharp cut-off in the power-law [26]. Our main goal is to study
how the freedom of the form of the PPS can affect the existing bounds on the presence in the
early Universe of additional sterile neutrinos. In particular, we want to explore the impact of a
light sterile neutrino with massms ∼ 1 eV which has been thermalized by neutrino oscillations
before neutrino decoupling at a temperature of the order of 1 MeV [28, 29]. Previous analyses
of the cosmological data with a standard power-law PPS have found that the case of a fully
thermalized sterile neutrino is quite disfavored [30–35]. This result motivated the study of
mechanisms which can suppress the thermalization of sterile neutrinos in the early Universe
due to active-sterile oscillations before neutrino decoupling [28, 29]. Examples are a large
lepton asymmetry [36–40], an enhanced background potential due to new interactions in
the sterile sector [41–47], a larger cosmic expansion rate at the time of sterile neutrino
production [48], and MeV dark matter annihilation [49].

Besides our main objective, which is to find out how the constraints on the presence
in the early Universe of additional sterile neutrinos change if the PPS is not forced to be a
power-law, we are also interested in obtaining information on the form of the PPS. With these
aims, we considered a general form of the PPS that allows the presence of features without
forcing a particular shape. In the literature several model-independent parameterizations
have been used: for example, a free PPS can be described with wavelets [50–53], principal
components [54], top-hat bins without interpolation [55], power-law bins [56, 57], linear
interpolation [25, 58–64], broken power-law [57, 65], and interpolating spline functions [26, 66–
72]. We decided to follow part of the prescriptions of the interpolating spline form presented in
refs. [69, 71], improving the parametrization by using a “piecewise cubic Hermite interpolating
polynomial” (PCHIP), which is described in appendix A. This method allows us to avoid the
spurious oscillating behavior that can appear between the nodes of interpolating splines.

This article is structured as follows: in section 2 we introduce the neutrino mixing
scheme, the cosmological model and the cosmological data used in the paper, in section 3 and
in section 4 we discuss the results obtained from the analysis for the cosmological parameters
and for the PPS respectively, and in section 5 we present our conclusions.

2 Neutrino mixing scheme, cosmological model and data

In this section we introduce the models and the datasets used in this paper. In subsection 2.1
we present the neutrino mixing scheme, in subsection 2.2 we introduce the cosmological
model, and in subsection 2.3 we present the cosmological data used in our analysis.

2.1 Neutrino mixing scheme

In this paper we consider the 3+1 neutrino mixing scheme, which is motivated by indications
in favor of short-baseline neutrino oscillations found in the LSND experiment [73], in Gallium
experiments [74–78] and in reactor experiments [79–81]. In this scheme, besides the three
standard active flavor neutrinos νe, νµ, ντ , there is a sterile neutrino which does not interact
through standard weak interactions. This sterile neutrino is a new particle beyond the
Standard Model which cannot be detected directly in current experiments (see [82–84]).
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The four flavor neutrinos νe, νµ, ντ , νs are superpositions of four massive neutrinos,
ν1, ν2, ν3, ν4 with respective masses m1, m2, m3, m4. The squared mass differences
∆m2

21 ' 8 × 10−5 eV2 and ∆m2
31 ' 2 × 10−3 eV2 (where ∆m2

kj = m2
k − m2

j ) generate the
neutrino oscillations which have been observed in many solar, atmospheric and long-baseline
experiments (see [85–88]). An additional much larger squared mass difference ∆m2

41 ∼ 1 eV2

is required in order to explain the indications in favor of short-baseline oscillations [89–95].
In the 3+1 scheme the three standard active flavor neutrinos νe, νµ, ντ are mainly composed
of the three massive neutrinos ν1, ν2, ν3, but they have a small component of ν4 in order
to generate the observed short-baseline oscillations through ∆m2

41. On the other hand, the
sterile neutrino νs is mainly composed of the massive neutrino ν4 and in the following we use
the common notation ms = m4.

Since the case of a very light ν4 and almost degenerate ν1, ν2, ν3 at the eV scale is
strongly disfavored by cosmological data (see ref. [96]) we consider the case ofms = m4 ∼ 1 eV
and much lighter ν1, ν2, ν3.

The combined analysis of cosmological data and short-baseline neutrino oscillation data
is performed by using the posterior distribution of ms = m4 '

√
∆m2

41 obtained from the
analysis of SBL data [95] as a prior in the CosmoMC analysis of cosmological data [31, 33, 34,
97, 98]. As shown in table 3 of ref. [33], the best-fit value of ms obtained from short-baseline
neutrino oscillation data is 1.27 eV and its 95.45% probability range (2σ) is between 0.97
and 1.42 eV.

2.2 Cosmological model

We used an extended flat ΛCDM model to accommodate the presence of a sterile neutrino
and inflationary freedom in the production of the primordial power spectra.

In the analysis with a power-law PPS we consider a flat ΛCDM+νs cosmological model
with a total of eight parameters:

θ = {ωcdm, ωb, θs, τ, ln(1010As), ns,ms,∆Neff}, (2.1)

where ωcdm ≡ Ωcdmh
2 and ωb ≡ Ωbh

2 are the present-day physical CDM and baryon densities,
θs the angular the sound horizon, τ the optical depth to reionisation, and ln(1010As) and ns
denote respectively the amplitude and spectral index of the initial scalar fluctuations at the
pivot scale of 0.002 Mpc−1. ∆Neff = Neff − NSM

eff , where NSM
eff = 3.046 [99] is the effective

number of relativistic degrees of freedom before photon decoupling in the Standard Model
with three massless neutrinos (see [100, 101]).

In contrast with previous analyses [33, 34, 98], we limit the allowed range of ∆Neff in
the interval 0 ≤ ∆Neff ≤ 1, assuming that the additional sterile neutrino cannot contribute
to the relativistic energy density more than a standard active neutrino. This happens if
sterile neutrinos are produced in the early Universe by neutrino oscillations before neutrino
decoupling [28, 29].

We assume a flat prior for all the parameters in eq. (2.1), except ms, for which we use
a flat prior for 0 ≤ ms/ eV ≤ 3 only in the analyses which do not take into account the
constraints from short-baseline neutrino oscillation data. In the analyses which take into
account these constraints we use as prior for ms the posterior obtained from the analysis
of SBL data presented in ref. [95], as explained at the end of subsection 2.1. We neglect
the masses of the three light neutrinos ν1, ν2, ν3, which are assumed to be much smaller
than 1 eV.
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In order to parameterize a free PPS we follow partially the prescriptions described
in [69, 71], but instead of the cubic spline function we interpolate with a “piecewise cubic
Hermite interpolating polynomial” (PCHIP) [102, 103], that is described only by the values of
the PPS in a discrete number of nodes, as discussed in appendix A. We used 12 nodes which
span a wide range of k values:

k1 = 5× 10−6 Mpc−1,

k2 = 10−3 Mpc−1,

kj = k2(k11/k2)(j−2)/9 for j ∈ [3, 10],

k11 = 0.35 Mpc−1,

k12 = 10 Mpc−1. (2.2)

In the range (k2, k11), that is well constrained from the data [71], we choose equally spaced
nodes in the logarithmic scale. The nodes k1 and k12 are used to parameterize a non-constant
behaviour of the PPS outside this range and their position is chosen in order to have all the
CosmoMC PPS evaluations inside the interval covered by our parametrization. The PCHIP PPS
is described by

Ps(k) = P0 × PCHIP(k;Ps,1, . . . , Ps,12), (2.3)

where P0 = 2.36× 10−9 [104] and Ps,j is the value of the PPS at the node kj divided by P0.
The function PCHIP(k;Ps,1, . . . , Ps,12) is described in appendix A.

In the PCHIP PPS analysis we consider a flat ΛCDM+νs cosmological model with a
total of 18 parameters:

θ = {ωcdm, ωb, θs, τ,ms,∆Neff, Ps,1, . . . , Ps,12}, (2.4)

where ωcdm, ωb, θs, τ,ms,∆Neff are the same as those in the set (2.1). We assume a flat prior
on Ps,j in the range 0.01 ≤ Ps,j ≤ 10.

The Bayesian analysis is performed through an appropriately modified version of the
Monte Carlo Markov Chain (MCMC) package CosmoMC [105], using the Boltzmann equations
solver CAMB [106] (Code for Anisotropies in the Microwave Background) for the calculation
of the observables.

2.3 Cosmological data sets

In this paper we use the same dataset as in refs. [34, 98], apart from the controversial BICEP2
data on the B-mode polarization of the CMB [107] that we neglect:

• CMB (Cosmic Microwave Radiation): the temperature fluctuations power spectra pro-
vided by the Planck satellite [108] up to ` = 2479, by Atacama Cosmology Telescope
(ACT) [109] and South Pole Telescope (SPT) [110] whose likelihoods cover the high
multipole range, 500 < ` < 3500 and 650 < ` < 3000, respectively. Concerning polar-
ization we include the data of the Wilkinson Microwave Anisotropy Probe (WMAP)
nine year data release [10].

• LSS (Large Scale Structure): the matter power spectrum at four different redshifts
z = 0.22, z = 0.41, z = 0.60 and z = 0.78 from the WiggleZ Dark Energy Survey [7].
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• H0: the Hubble parameter as obtained with the Hubble Space Telescope (HST) [111],
which acts as a prior on the derived cosmological parameter H0 = 73.8 ±
2.4 km s−1 Mpc−1.

• PSZ: the Planck Sunayev Zel’Dovich catalogue [112] contains 189 galaxy clusters iden-
tified through the Sunayev Zel’Dovich effect. The number counts allows to com-
pute the cluster mass function, which is related to a combination of Ωm and σ8:
σ8(Ωm/0.27)0.3 = 0.782 ± 0.010. This result contributes as an additional χ2 in our
analysis.

• CFHTLenS: the 2D cosmic shear correlation function as determined by the Canada-
France Hawaii Telescope Lensing Survey (CFHTLenS) [113, 114] through the measure-
ments of redshifts and shapes of 4.2 million galaxies spanning the range 0.2 < z < 1.3.
The weak gravitational lensing signal extracted from these measurements constrains a
combination of the total matter density and the standard deviation of the amplitude
of the matter density fluctuations on a sphere of radius 8h−1Mpc: σ8(Ωm/0.27)0.46 =
0.774±0.040. This result is incorporated in our analysis following the same prescription
used for PSZ.

In the following we denote the analyses of all these cosmological data alone as “COSMO”
and those which include also the short-baseline neutrino oscillation prior as “COSMO+SBL”.

3 Cosmological parameters and sterile neutrinos

The results of our COSMO and COSMO+SBL analyses are presented in table 1 for the
standard case of a power-law PPS and in table 2 for the free PPS with the PCHIP parameteri-
zation. In the upper part of the tables we listed the common parameters of the ΛCDM model,
in the central part we listed the neutrino parameters ∆Neff and ms, while the lower part con-
cerns the parameters used to parameterize the PPS: ns and log(1010As) for the power-law
PPS and Ps,j for the PCHIP PPS. The constraints on the PPS parameters are discussed in
the next section. In this section we discuss first the results relative to the parameters in the
upper part of the tables, 100 Ωbh

2, Ωcdmh
2, θs and τ , and then the results relative to the

parameters in the central part of the tables, ∆Neff and ms.
The bounds on the parameters of the ΛCDM model change slightly when more freedom

is admitted for the PPS. Comparing tables 1 and 2, one can see that the limits on the
parameters of the ΛCDM model are slightly weakened in the PCHIP PPS case and for some
parameters there is also a small shift in the marginalized best-fit value. In all the cases in
which this happens, the marginalized best-fit values move inside the 1σ uncertainties. The
freedom of the form of the PPS affects the COSMO results more than the COSMO+SBL
results: in the former case the Ωcdmh

2 and θs best values change by about 1σ, while a smaller
shift is obtained for 100 Ωbh

2. On the other hand, in the COSMO+SBL analysis all the shifts
are much smaller than the 1σ uncertainties.

Figure 1 shows the marginalized 1σ, 2σ and 3σ allowed intervals for ∆Neff and ms that
we obtained in the COSMO(PL) and COSMO(PCHIP) analyses, without the SBL prior.
Figure 2 shows the corresponding marginalized 1σ, 2σ and 3σ allowed regions in the ms–
∆Neff plane. We can notice some major changes in the allowed values of both ∆Neff and
ms in the PCHIP PPS case with respect to the power-law PPS case. With a power-law PPS
the best-fit value of ∆Neff is around 0.4, whereas with the PCHIP PPS it is at ∆Neff = 1,
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Parameters COSMO COSMO+SBL

100 Ωbh
2 2.263+0.026

−0.027
+0.052
−0.053

+0.078
−0.080 2.251+0.023

−0.025
+0.049
−0.045

+0.075
−0.067

Ωcdmh
2 0.120+0.004

−0.005
+0.008
−0.008

+0.011
−0.009 0.117+0.002

−0.003
+0.006
−0.005

+0.010
−0.006

θs 1.0412+0.0007
−0.0007

+0.0014
−0.0014

+0.0020
−0.0021 1.0416+0.0006

−0.0006
+0.0012
−0.0012

+0.0018
−0.0019

τ 0.087+0.013
−0.014

+0.028
−0.026

+0.045
−0.037 0.087+0.013

−0.013
+0.026
−0.025

+0.040
−0.035

∆Neff 0.38+0.18
−0.33; No limit; No limit 0.19+0.09

−0.12; < 0.41; < 0.60

ms[eV] 0.61+0.31
−0.42; < 2.03; No limit 1.25+0.11

−0.16
+0.17
−0.29

+0.22
−0.35

ns 0.979+0.011
−0.010

+0.020
−0.020

+0.030
−0.025 0.969+0.005

−0.005
+0.011
−0.011

+0.017
−0.016

log(1010As) 3.152+0.031
−0.032

+0.064
−0.058

+0.094
−0.087 3.178+0.024

−0.025
+0.048
−0.051

+0.072
−0.075

Table 1. Marginalized 1σ, 2σ and 3σ confidence level limits for the cosmological parameters obtained
with the power-law parametrization for the PPS.

Parameters COSMO COSMO+SBL

100 Ωbh
2 2.251+0.036

−0.036
+0.073
−0.073

+0.111
−0.110 2.247+0.036

−0.038
+0.072
−0.078

+0.111
−0.117

Ωcdmh
2 0.125+0.005

−0.004
+0.007
−0.011

+0.009
−0.014 0.118+0.004

−0.005
+0.011
−0.007

+0.016
−0.008

θs 1.0407+0.0007
−0.0008

+0.0016
−0.0014

+0.0024
−0.0020 1.0413+0.0008

−0.0007
+0.0014
−0.0016

+0.0020
−0.0024

τ 0.086+0.014
−0.016

+0.033
−0.028

+0.053
−0.038 0.090+0.014

−0.016
+0.033
−0.029

+0.051
−0.039

∆Neff > 0.54; No limit; No limit 0.25+0.13
−0.22; < 0.75; No limit

ms[eV] 0.62+0.21
−0.26

+0.87
−0.54; No limit 1.22+0.13

−0.15
+0.17
−0.28

+0.24
−0.33

Ps,1 < 2.51; < 8.13; No limit < 2.75; < 8.30; No limit

Ps,2 1.06+0.19
−0.22

+0.43
−0.35

+0.71
−0.43 1.05+0.18

−0.22
+0.44
−0.35

+0.75
−0.44

Ps,3 0.65+0.19
−0.19

+0.38
−0.37

+0.57
−0.54 0.67+0.20

−0.19
+0.39
−0.36

+0.61
−0.52

Ps,4 1.14+0.11
−0.11

+0.23
−0.22

+0.36
−0.31 1.13+0.11

−0.11
+0.23
−0.21

+0.34
−0.31

Ps,5 0.97+0.06
−0.05

+0.11
−0.10

+0.17
−0.16 0.98+0.05

−0.06
+0.11
−0.10

+0.17
−0.15

Ps,6 0.96+0.03
−0.03

+0.07
−0.06

+0.10
−0.08 0.98+0.03

−0.03
+0.07
−0.06

+0.11
−0.08

Ps,7 0.94+0.03
−0.03

+0.06
−0.05

+0.10
−0.07 0.94+0.03

−0.03
+0.06
−0.06

+0.10
−0.07

Ps,8 0.93+0.03
−0.03

+0.06
−0.05

+0.10
−0.07 0.93+0.03

−0.03
+0.06
−0.06

+0.10
−0.07

Ps,9 0.93+0.03
−0.03

+0.07
−0.06

+0.11
−0.08 0.91+0.03

−0.03
+0.07
−0.06

+0.10
−0.07

Ps,10 0.91+0.04
−0.04

+0.08
−0.08

+0.12
−0.11 0.88+0.03

−0.04
+0.08
−0.07

+0.14
−0.08

Ps,11 1.14+0.17
−0.16

+0.28
−0.30

+0.42
−0.39 1.00+0.13

−0.17
+0.35
−0.24

+0.52
−0.28

Ps,12 < 0.70; < 1.19; < 1.54 < 0.49; < 1.01; < 1.33

Table 2. Marginalized 1σ, 2σ and 3σ confidence level limits for the cosmological parameters obtained
with the PCHIP parametrization for the PPS.
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0.0 0.2 0.4 0.6 0.8 1.0

∆Neff

COSMO (PL)

COSMO (PCHIP)

COSMO+SBL (PL)

COSMO+SBL (PCHIP)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

ms [eV]

COSMO (PL)

COSMO (PCHIP)

COSMO+SBL (PL)

COSMO+SBL (PCHIP)

Figure 1. 1σ, 2σ and 3σ marginalized intervals for ∆Neff and ms obtained in the different analyses
discussed in the text (considering 0 ≤ ∆Neff ≤ 1 and 0 ≤ ms/ eV ≤ 3).

that is the upper limit for ∆Neff assumed in the analysis. The reason of this behavior is
that the effects of the presence of additional relativistic energy in the primordial universe can
be compensated by an increase of the PCHIP PPS at large k. As a result, the marginalized
posterior for ∆Neff is increased in the region towards ∆Neff = 1, in correspondence with
higher values in the PCHIP PPS for k > 0.35 Mpc−1.

Without the SBL constraint on ms, the different preferences for the value of ∆Neff

in the power-law and PCHIP PPS analyses correspond to different allowed intervals for ms.
As shown in figure 1, although in both cases the best-fit value of ms is near 0.6 eV, the
intermediate preferred region for ∆Neff in the power-law PPS analysis gives for ms an upper
limit of about 2 eV at 2σ, whereas the large preferred values for ∆Neff in the PCHIP PPS
analysis gives a tighter upper limit of about 1.5 eV at 2σ.

The SBL prior on the sterile neutrino mass ms puts a constraint so strong that in
practice the value of this parameter does not depend on the inclusion or not of the freedom
of the PPS. In fact, the ms limits in tables 1 and 2 are similar in the power-law PPS and
PCHIP PPS analyses. This can be seen also from the marginalized allowed intervals of ms in
figure 1, comparing the COSMO+SBL(PL) and COSMO+SBL(PCHIP) allowed intervals.

A major difference occurs, instead, in the limits for ∆Neff, because the effects of the
presence of additional relativistic energy in the primordial universe can be compensated by
an increase in the PCHIP PPS at large k, as in the case without the SBL constraint on ms.
As shown in figure 1, the best-fit and upper limits on ∆Neff in the COSMO+SBL(PL) and
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COSMO+SBL(PCHIP) are different. In particular, in the COSMO+SBL(PCHIP) the 3σ
upper limit on ∆Neff allows the presence of a fully thermalized sterile neutrino compatible
with the SBL constraint on ms.

Figure 3 shows the contour plots of the marginalized 1σ, 2σ and 3σ regions in the
ms–∆Neff plane that we obtained in the COSMO+SBL(PL) and COSMO+SBL(PCHIP)
analyses. The allowed regions in the left panel are similar1 to those obtained in ref. [34]
with a standard power-law PPS. One can see that in this case a fully thermalized sterile
neutrino is quite disfavored. On the other hand, from the right panel one can see that in the
PCHIP PPS analysis a fully thermalized sterile neutrino with a mass just below 1 eV and with
∆Neff = 1 is even inside the 2σ region. This means that a fully thermalized sterile neutrino
can be accommodated in the cosmological model if the PPS is not forced to be described by
a power-law.

4 Best-fitting primordial power spectrum

The results of our PCHIP PPS analyses without and with the SBL prior on ms give interesting
information on the shape of the PPS.

The marginalized posterior limits for the values Ps,j in eq. (2.3) are listed in table 2.
One can see that the least constrained nodes are the first and last, in k1 and k12, for which
there are only upper limits on the corresponding Ps,j . This was expected, because there are
no data at the edges of the wide interval of k that we have considered. For these two extreme
nodes the marginalized posterior is peaked on the lowest value that we allowed in the fit
(0.01).

On the contrary, the nodes from 5 to 10 are well constrained, at the level of a few percent
at 1σ. Considering the nodes from 2 to 4, one can see that the second node has preferred
values higher than 1 within 1σ, the third node value is more than 2σ below 1 (around 0.6),
the fourth node value is again higher than 1 at more than 1σ. This implies that the PPS
that we obtained from the MCMC has a significant dip around k3 ' 0.002 Mpc−1 and a less
significant bump around k4 ' 0.0035 Mpc−1.

To help the reader to visualize this feature, we present in figure 4 a comparison of
the best-fitting PPS2 in the power-law parametrization and in the PCHIP parametrization,
without and with the SBL constraint. One can see that the best-fitting PCHIP curves with
and without the SBL prior are significantly different only for k & k10. The dip around
k3 ' 0.002 Mpc−1 and the bump around k4 ' 0.0035 Mpc−1 are clearly seen in the PCHIP

parametrization.

From figure 4 one can also see that the PCHIP parametrization has an approximate
power-law behavior between about k5 ' 0.007 Mpc−1 and k10 ' 0.2 Mpc−1.

Another helpful way to visualize the behaviour of the PPS obtained in the analyses
without and with the SBL prior with the PCHIP parametrization is presented in figure 5,

1The only difference is that the analysis in ref. [34] took into account also the BICEP2 data on the B-mode
polarization of the CMB [107].

2We consider as the best-fitting PPS that which corresponds to the lower value χ2
min of χ2 = −2 lnP,

where P is the marginalized posterior probability in the space of the parameters Ps,1, . . . , Ps,12. However,
one must take into account that in a parameter space with a large number of dimensions NP the MCMC is
not expected to explore well the region near the true global best-fit corresponding to χ2

min,true. In fact, the
points are distributed mainly in a region where χ2 − χ2

min,true ∼ NP. Therefore, the PPS that we consider as
best-fitting can be different from the true best-fitting PPS in the intervals of k which are not well constrained
by the data.
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Figure 2. 1σ, 2σ and 3σ marginalized contours in the ms −∆Neff plane in the fits without the SBL
prior. The left and right panels correspond, respectively, to the standard power-law PPS and the
PCHIP PPS analyses.

0.8 1.0 1.2 1.4 1.6

ms [eV]

0.0

0.2

0.4

0.6

0.8

1.0

∆
N

ef
f

COSMO+SBL (PL)

0.8 1.0 1.2 1.4 1.6

ms [eV]

0.0

0.2

0.4

0.6

0.8

1.0

∆
N

ef
f

COSMO+SBL (PCHIP)

Figure 3. 1σ, 2σ and 3σ marginalized contours in the ms − ∆Neff plane in the fits with the SBL
prior. The left and right panels correspond, respectively, to the standard power-law PPS and the
PCHIP PPS analyses.
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Figure 4. Best-fit PPS with different dataset combinations and PPS parameterizations.

which shows the 1σ, 2σ and 3σ bands obtained by marginalizing the posterior distribution for
each value of the wavenumber k in a fine grid. The two plots in figure 5 show a well collimated
band corresponding to the region in which the power-law gives a good approximation of the
PCHIP PPS, between about k5 ' 0.007 Mpc−1 and k10 ' 0.2 Mpc−1. Moreover, the dip at
k ' 0.002 Mpc−1 is well visible, as well as the bump at k ' 0.0035 Mpc−1. On the other
hand, the widths of the bands diverge for low and high values of k, where there are large
uncertainties.

The major features that we have noticed in the reconstructed PPS are in agreement
with those found in ref. [20], in which the scalar PPS has been reconstructed with a totally
different technique, the Richardson-Lucy iteration algorithm, using the transfer function
corresponding to the Planck 2013 best-fit for the ΛCDM model. Apart for the suppression
that they found around k ' 2×10−4 Mpc−1 and the features at higher k, the main differences
with respect to the power-law PPS are the same that we found in our analysis. According
to the authors of ref. [20], these major features are related to the low-` spectrum of the
temperature perturbations measured by the Planck experiment, that obtained a dip in the
power around ` ' 22 and a slight excess around ` ' 40.

Although the parametrization with a natural cubic spline is noisy due to spurious os-
cillations between the nodes, also in figure 8 of ref. [71] it is possible to guess the presence of
a dip around k ' 0.002 Mpc−1, especially in the curves with more than 20 nodes. However,
our parametrization is much cleaner and permits a better visualization of these features.

– 10 –



J
C
A
P
0
4
(
2
0
1
5
)
0
2
3

10-5 10-4 10-3 10-2 10-1 100 101

k [Mpc−1 ]

10-1

100

101

10
9

 x
 P
S
(k

)

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12

COSMO (PCHIP)

10-5 10-4 10-3 10-2 10-1 100 101

k [Mpc−1 ]

10-1

100

101

1
0

9
 x

 P
S
(k

)

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12

COSMO+SBL (PCHIP)

Figure 5. Allowed 1σ, 2σ and 3σ bands of the PCHIP PPS obtained in the analyses without (COSMO)
and with (COSMO+SBL) the SBL prior. The bands have been obtained by marginalizing the posterior
distribution for each value of the wavenumber k in a fine grid. The black curves correspond to the
maximum of the posterior distribution for each value of k.
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5 Conclusions

In this work we analyzed the effects of a free form of the primordial power-spectrum of scalar
fluctuations, which is not constrained to the usual power-law form that is predicted by the
simplest models of inflation (see refs. [1–3]). This freedom in the PPS could arise from a
more complicate inflationary mechanism (see refs. [4, 5] and references therein).

We parameterized the PPS with a “piecewise cubic Hermite interpolating polynomial”
(PCHIP) described in details in appendix A. Our PCHIP parameterization of the PPS depends
from the values of the PPS in twelve nodes (given in eq. (2.2)) which cover a wide range
of values of the wavenumber k. We choose the PCHIP method in order to avoid spurious
oscillations of the interpolated function between the nodes that can be obtained with spline
interpolations (see refs. [69, 71]).

We performed an analysis of cosmological data in which only the primordial spectrum of
scalar perturbations is considered, neglecting the controversial [96, 115] data on the B-mode
polarization of the CMB [107] which would require to take into account also the primordial
spectrum of tensor perturbations. We used the most precise CMB measurements together
with low-redshift measurements of the Hubble parameter, the galaxy distribution and the
matter distribution in the Universe (see section 2.3).

We found that the freedom of the form of the PPS does not affect significantly the fitted
values of the parameters in the ΛCDM model, while the results concerning the existence of
a sterile neutrino in the early Universe can change drastically. If we do not impose any prior
on the sterile neutrino mass ms from the results of short-baseline oscillation experiments (see
section 2.1), a larger value for the sterile neutrino contribution ∆Neff to the effective number
of relativistic degrees of freedom before photon decoupling is preferred in the PCHIP PPS
parameterization with respect to the standard power-law parameterization. The marginalized
best fit of ∆Neff is moved towards one, which corresponds to a fully thermalized sterile
neutrino. This shift corresponds to a tightening of the cosmological preferred values for ms.

In the analysis with a prior on ms obtained from the fit of short-baseline oscillation
experiments [95], the freedom of the PCHIP PPS affects only the bound on ∆Neff, because
the allowed range of ms is strongly constrained by the SBL prior. We found that a free form
of the PPS allows the existence in the early Universe of a fully thermalized sterile neutrino
with a mass of about 1 eV [28, 29]. This possibility is quite disfavored by the analysis of
cosmological data with a power-law PPS [30–35]. Hence, the freedom of the PPS allows us to
reconcile the cosmological data with short-baseline neutrino oscillations without the need of
an additional mechanism which suppresses the thermalization of the sterile neutrino [36–49].

We obtained also some interesting information on the form of the PPS, whose behavior
is well constrained by the cosmological analysis for 0.001 Mpc−1 . k . 0.3 Mpc−1. In
particular, we have shown that in the range 0.007 Mpc−1 . k . 0.2 Mpc−1 the PPS can
be approximated with a power-law and the values of the PPS in the nodes of the PCHIP

parameterization lying in this range of k have only a few-percent uncertainty. The PPS
in the range 0.001 Mpc−1 . k . 0.0035 presents a clear dip at k ' 0.002 Mpc−1, with a
statistical significance of more than 2σ, and a small bump at k ' 0.0035 Mpc−1, with a
statistical significance of about 1σ. These features of the PPS are in agreement with those
found in ref. [20] with a completely different method.

In the future the analysis presented in this work could be repeated with the inclusion of
a parametrization for the primordial spectrum of tensor perturbations when improved data
on the B-mode polarization of the CMB will be available. This will allow us to study with
more precision the few relics of cosmological inflation that we can access.
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A PCHIP parametrization of the primordial power spectrum

In this work we parameterized the PPS with a “piecewise cubic Hermite interpolating poly-
nomial” (PCHIP) [102, 103]. We decided to adopt this interpolating function in order to
avoid spurious oscillations of the interpolating function between the nodes which is often
obtained in spline interpolations. This problem occurs because a natural cubic spline re-
quires the values of the function, the first and the second derivatives to be continuous in the
nodes [116].

The PCHIP function, instead, is constructed in order to preserve the shape of the set of
points to be interpolated. This is achieved with a modification of the “monotone piecewise
cubic interpolation” [102] which can accommodate non-monotone functions and preserves
the local monotonicity.

Let us consider a function with known values yj in N nodes xj , with j = 1, . . . , N . A
piecewise cubic interpolation is performed with N − 1 cubic functions between the nodes.
The determination of these N − 1 cubic functions requires the determination of 4(N − 1)
coefficients. Besides the 2(N − 1) constraints obtained by requiring that the initial and
final point of each cubic function match the known values of the original function in the
corresponding nodes, one needs a prescription for the other 2(N − 1) necessary constraints.
In the case of a natural cubic spline interpolation one gets 2(N−2) constraints by requiring the
continuity of the first and second derivatives in the nodes and the remaining two constraints
are obtained by requiring that the second derivatives in the first and last nodes vanish. The
drawback of this method is that the interpolating curve is determined by a set of linear
equations without any local control. In fact, all the interpolating curve is affected by the
change of a single point.

Local control of the interpolating curve can be achieved by relaxing the requirement of
continuity of the second derivatives in the nodes and using the resulting freedom to adjust
the first derivatives with a local prescription. In order to see how it can be done, it is
convenient to write the cubic interpolating polynomial between the nodes xj and xj+1 in the
Hermite form

f(x; y1, . . . , yN ) =
(hj + 2t) (hj − t)2

h3
j

yj +
(3hj − 2t) t2

h3
j

yj+1 +
(hj − t)2 t

h2
j

dj +
t2 (hj − t)

h2
j

dj+1,

(A.1)
where t = x − xj and hj = xj+1 − xj . Here dj and dj+1 are the values of the derivatives in
the two nodes. In the PCHIP method the derivatives are chosen in order to preserve the local
monotonicity of the interpolated points. This is done by considering the relative differences

δj =
yj+1 − yj
xj+1 − xj

. (A.2)

The PCHIP prescription is:
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• If δj−1 and δj have opposite signs, then xj is a discrete local minimum or maximum
and dj = 0.

• If δj−1 and δj have the same sign, then dj is determined by the weighted harmonic
mean

w1 + w2

dj
=

w1

δj−1
+
w2

δj
, (A.3)

with w1 = 2hj + hj−1 and w2 = hj + 2hj−1.

• The derivatives in the first and last nodes are determined by a shape-preserving pre-
scription based on a quadratic fit of three points. For d1 we consider the three points
(x1, y1), (x2, y2), (x3, y3). The derivative in x1 of the parabola which passes through
these three points is given by

d(h1, h2, δ1, δ2) =
(2h1 + h2) δ1 − h1δ2

h1 + h2
. (A.4)

The shape-preserving prescription for d1 is:

– If the signs of d(h1, h2, δ1, δ2) and δ1 are different, then d1 = 0.

– If the signs of δ1 and δ2 are different and |d(h1, h2, δ1, δ2)| > 3|δ1|, then d1 = 3δ1.

– Else d1 = d(h1, h2, δ1, δ2).

For dN one must replace 1→ N − 1 and 2→ N − 2.

We fit the power spectrum Ps(k) with eq. (2.3), in which the function PCHIP(k;Ps,1,. . . ,
Ps,12) is calculated with the PCHIP prescription in the logarithmic scale of k:

PCHIP(k;Ps,1, . . . , Ps,12) = f(log k;Ps,1, . . . , Ps,12) . (A.5)

A comparison between the natural cubic spline and the PCHIP interpolations of the
PPS is presented in figure 6. We choose the same nodes positions that we used for the PPS
parametrization in our cosmological analysis and we choose the values of the function in
the nodes in order to show the difference between the natural cubic spline and the PCHIP

interpolations. One can see that the PCHIP interpolation can reproduce the shape of the
points without adding the spurious features between the points that are clearly visible in the
natural cubic spline interpolation.
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