1,453 research outputs found

    Graph Vertex Sampling with Arbitrary Graph Signal Hilbert Spaces

    Full text link
    Graph vertex sampling set selection aims at selecting a set of ver-tices of a graph such that the space of graph signals that can be reconstructed exactly from those samples alone is maximal. In this context, we propose to extend sampling set selection based on spectral proxies to arbitrary Hilbert spaces of graph signals. Enabling arbitrary inner product of graph signals allows then to better account for vertex importance on the graph for a sampling adapted to the application. We first state how the change of inner product impacts sampling set selection and reconstruction, and then apply it in the context of geometric graphs to highlight how choosing an alternative inner product matrix can help sampling set selection and reconstruction.Comment: Accepted at ICASSP 202

    Spatio-temporal patterns in a mechanical model for mesenchymal morphogenesis

    Get PDF
    We present an in-depth study of spatio-temporal patterns in a simplified version of a mechanical model for pattern formation in mesenchymal morphogenesis. We briefly motivate the derivation of the model and show how to choose realistic boundary conditions to make the system well-posed. We firstly consider one-dimensional patterns and carry out a nonlinear perturbation analysis for the case where the uniform steady state is linearly unstable to a single mode. In two-dimensions, we show that if the displacement field in the model is represented as a sum of orthogonal parts, then the model can be decomposed into two sub-models, only one of which is capable of generating pattern. We thus focus on this particular sub-model. We present a nonlinear analysis of spatio-temporal patterns exhibited by the sub-model on a square domain and discuss mode interaction. Our analysis shows that when a two-dimensional mode number admits two or more degenerate mode pairs, the solution of the full nonlinear system of partial differential equations is a mixed mode solution in which all the degenerate mode pairs are represented in a frequency locked oscillation

    Procedimiento conciliatorio en Colombia

    Get PDF
    La conciliación es uno de los mecanismos alternativos de solución de conflictos más importantes y desarrollados en Colombia. Pese a que las normas legales que rigen la materia son las mismas, en la práctica parece que los conciliadores y centros de conciliación aplican el procedimiento de manera diferente. El presente texto tiene como objetivo poner a disposición de las personas interesadas en la conciliación una descripción de las etapas que integran el procedimiento conciliatorio. El análisis jurídico del procedimiento empieza con los requisitos de la solicitud de conciliación y termina con el seguimiento que se debe hacer al resultado del servicio ofrecido. Para el desarrollo de la presente obra, se integra la legislación, la jurisprudencia y los conceptos de línea institucional del Ministerio del Interior y de Justicia con ejemplos sencillos que permiten un mejor entendimiento de los conceptos que se quieren dar a conocer

    Friedel Oscillations and Charge-density Waves Pinning in Quasi-one-dimensional Conductors: An X-ray Access

    Full text link
    We present an x-ray diffraction study of the Vanadium-doped blue bronze K0.3(Mo0.972V0.028)O3. At low temperature, we have observed both an intensity asymmetry of the +-2kF satellite reflections relative to the pure compound, and a profile asymmetry of each satellite reflections. We show that the profile asymmetry is due to Friedel oscillation around the V substituant and that the intensity asymmetry is related to the charge density wave (CDW) pinning. These two effects, intensity and profile asymmetries, gives for the first time access to the local properties of CDW in disordered systems, including the pinning and even the phase shift of FOs.Comment: 4 pages REVTEX, 5 figure

    Noninvasive mechanical ventilation in high-risk pulmonary infections: a clinical review

    Get PDF
    The aim of this article was to review the role of noninvasive ventilation (NIV) in acute pulmonary infectious diseases, such as severe acute respiratory syndrome (SARS), H1N1 and tuberculosis, and to assess the risk of disease transmission with the use of NIV from patients to healthcare workers. We performed a clinical review by searching Medline and EMBASE. These databases were searched for articles on "clinical trials" and "randomised controlled trials". The keywords selected were non-invasive ventilation pulmonary infections, influenza-A (H1N1), SARS and tuberculosis. These terms were cross-referenced with the following keywords: health care workers, airborne infections, complications, intensive care unit and pandemic. The members of the International NIV Network examined the major results regarding NIV applications and SARS, H1N1 and tuberculosis. Cross-referencing mechanical ventilation with SARS yielded 76 studies, of which 10 studies involved the use of NIV and five were ultimately selected for inclusion in this review. Cross-referencing with H1N1 yielded 275 studies, of which 27 involved NIV. Of these, 22 were selected for review. Cross-referencing with tuberculosis yielded 285 studies, of which 15 involved NIV and from these seven were selected. In total 34 studies were selected for this review. NIV, when applied early in selected patients with SARS, H1N1 and acute pulmonary tuberculosis infections, can reverse respiratory failure. There are only a few reports of infectious disease transmission among healthcare workers

    AC electrokinetic phenomena over semiconductive surfaces: effective electric boundary conditions and their applications

    Full text link
    Electrokinetic boundary conditions are derived for AC electrokinetic (ACEK) phenomena over leaky dielectric (i.e., semiconducting) surfaces. Such boundary conditions correlate the electric potentials across the semiconductor-electrolyte interface (consisting of the electric double layer (EDL) inside the electrolyte solutions and the space charge layer (SCL) inside the semiconductors) under AC electric fields with arbitrary wave forms. The present electrokinetic boundary conditions allow for evaluation of induced zeta potential contributed by both bond charges (due to electric polarization) and free charges (due to electric conduction) from the leaky dielectric materials. Subsequently, we demonstrate the applications of these boundary conditions in analyzing the ACEK phenomena around a semiconducting cylinder. It is concluded that the flow circulations exist around the semiconducting cylinder and are shown to be stronger under an AC field with lower frequency and around a cylinder with higher conductivity.Comment: 29 pages, 4 figure

    Attributing and Referencing (Research) Software: Best Practices and Outlook from Inria

    Get PDF
    Software is a fundamental pillar of modern scientiic research, not only in computer science, but actually across all elds and disciplines. However, there is a lack of adequate means to cite and reference software, for many reasons. An obvious rst reason is software authorship, which can range from a single developer to a whole team, and can even vary in time. The panorama is even more complex than that, because many roles can be involved in software development: software architect, coder, debugger, tester, team manager, and so on. Arguably, the researchers who have invented the key algorithms underlying the software can also claim a part of the authorship. And there are many other reasons that make this issue complex. We provide in this paper a contribution to the ongoing eeorts to develop proper guidelines and recommendations for software citation, building upon the internal experience of Inria, the French research institute for digital sciences. As a central contribution, we make three key recommendations. (1) We propose a richer taxonomy for software contributions with a qualitative scale. (2) We claim that it is essential to put the human at the heart of the evaluation. And (3) we propose to distinguish citation from reference

    About the Electrospray Ionization Source in Mass Spectrometry: Electrochemistry and On-chip Reactions

    Get PDF
    The present work shows that the electrochemical properties of electrospray ionization (ESI) can be used to add functions to the process. As example, we show how the choice of the electrode material can be used to study interactions between metal ions and biomolecules in mass spectrometry (MS). In positive ionization MS, an electrospray device acts as anode, which implies oxidation reactions. Sacrificial electrodes (made of copper or zinc) are used to supply the electrospray current and to produce cations that are able to react on-line with compounds of interest. Thus, the interactions between copper ions and ligands or peptides were investigated by using a copper electrode. Another example is the in situ electrogeneration of a dinuclear zinc(II) complex for the mass tagging of phosphopeptides when working with a zinc electrode. In order to perform these reactions on the same microchip, a dual-channel microsprayer was used, where one channel was dedicated to the tag electrogeneration and the other to the infusion of a phosphopeptides solution. Finally, this dual-channel microsprayer was used to study complexation at liquid-liquid interfaces in biphasic ESI-MS, such as thioether crowns and lead ions or peptides and phospholipids complexes. These examples illustrate the use of electrochemistry and on-chip reactions in ESI-MS analysis

    Frictional Heating Processes and Energy Budget During Laboratory Earthquakes

    Get PDF
    International audienceDuring an earthquake, part of the released elastic strain energy is dissipated within the slip zone by frictional and fracturing processes, the rest being radiated away via elastic waves. While frictional heating plays a key role in the energy budget of earthquakes, it could not be resolved by seismological data up to now. Here we investigate the dynamics of laboratory earthquakes by measuring frictional heat dissipated during the propagation of shear instabilities at stress conditions typical of seismogenic depths. We estimate the complete energy budget of earthquake rupture and demonstrate that the radiation efficiency increases with thermal-frictional weakening. Using carbon properties and Raman spectroscopy, we map spatial heat heterogeneities on the fault surface. We show that an increase in fault strength corresponds to a transition from a weak fault with multiple strong asperities and little overall radiation, to a highly radiative fault behaving as a single strong asperity. Plain Language Summary In nature, earthquakes occur when the stress accumulated in a medium is released by frictional sliding on faults. The stress released is dissipated into fracture and heat energy or radiated through seismic waves. The seismic efficiency of an earthquake is a measure of the fraction of the energy that is radiated away into the host medium. Because faults are at inaccessible depths, we reproduce earthquakes in the laboratory under natural in situ conditions to understand the physical processes leading to dynamic rupture. We estimate the first complete energy budget of an earthquake and show that increasing heat dissipation on the fault increases the radiation efficiency. We develop a novel method to illuminate areas of the fault that get excessively heated up. We finally introduce the concept of spontaneously developing heat asperities, playing a major role in the radiation of seismic waves during an earthquake

    Electrochemical Sensor Research at the Laboratoire d'Electrochimie of the EPFL

    Get PDF
    This review presents some recent developments in the field of electroanalytical sensors. We first explain the working principle of electrochemistry at the interface between two immiscible electrolyte solutions (ITIES), illustrated by the example of copper transferring through a water/1,2-dichloroethane interface when the ionophore 1,4,7,10-tetrathiacyclododecane is present in the organic phase. The obtained results show that assisted ion-transfer reactions take place with both CuI and CuII, but that the interfacial process is complicated by the fact that CuI disproportionates in water and that CuII can be reduced in the organic phase.Based on the same experimental methodology, a new type of amperometric detector for non-redox ions has been developed using a composite polymer membrane supporting a gelified organic phase that can incorporate an ionophore such as valinomycin. We report here the use of a (o-nitrophenyloctylether)-(poy(vinyl chloride) (NPOE-PVC) gel micro-interface as a detector for cations and anions in ion-exchange chromatography. The main advantage of this approach is that selectivity and sensitivity can be tailored by the choice of the ionophore and by the polarisation potential.This ion detector has also been incorporated in a miniaturised total-analysis system (µ-TAS) fabricated in a polymer sheet by UV-laser photoablation. This microfabrication technique is used for the prototyping of a disposable capillary-electrophoresis microsystem comprising on-chip injector, separation column and electrochemical detector. This system is further used with built-in carbon-ink electrodes for the detection of electroactive species. These microsystems are now under development for immuno-sensor applications
    • …
    corecore