19 research outputs found

    J. Med. Genet.

    Get PDF
    Background: Primary microcephaly (MCPH) is a genetically heterogeneous disorder showing an autosomal recessive mode of inheritance. Affected individuals present with head circumferences more than three SDs below the age- and sex-matched population mean, associated with mild to severe mental retardation. Five genes (MCPH1, CDK5RAP2, ASPM, CENPJ, STIL) and two genomic loci, MCPH2 and MCPH4, have been identified so far. Methods and results: In this study, we investigated all seven MCPH loci in patients with primary microcephaly from 112 Consanguineous Iranian families. In addition to a thorough clinical characterisation, karyotype analyses were performed for all patients. For Homozygosity mapping, microsatellite markers were selected for each locus and used for genotyping. Our investigation enabled us to detect homozygosity at MCPH1 (Microcephalin) in eight families, at MCPH5 (ASPM) in thirtheen families. Three families showed homozygosity at MCPH2 and five at MCPH6 (CENPJ), and two families were linked to MCPH7 (STIL). The remaining 81 families were not linked to any of the seven known loci. Subsequent sequencing revealed eight, 10 and one novel mutations in Microcephalin, ASPM and CENPJ, respectively. In some families, additional features such as short stature, seizures or congenital hearing loss were observed in the microcephalic patient, which widens the spectrum of clinical manifestations of mutations in known microcephaly genes. Conclusion: Our results show that the molecular basis of microcephaly is heterogeneous; thus, the Iranian population may provide a unique source for the identification of further genes underlying this disorder

    Bi-allelic Mutations in ALDH5A1 is associated with succinic semialdehyde dehydrogenase deficiency and severe intellectual disability

    No full text
    Homozygous mutations of ALDH5A1 have been reportedly associated with Succinic semialdehyde dehydrogenase deficiency (SSADHD) that affects gamma-aminobutyric acid (GABA) catabolism and evinces a wide range of clinical phenotype from mild intellectual disability to severe neurodegenerative disorders. We report clinical and molecular data of a Lor family with 2 affected members presenting with severe intellectual disability, developmental delay, and generalized tonic-clonic seizures. A comprehensive genetic study that included whole-exome sequencing identified a homozygous missense substitution (NM001080:c.G1321A:p.G441R) in ALDH5A1 (Aldehyde Dehydrogenase 5 Family Member A1) gene, consistent with clinical phenotype in the patients and co-segregating with the disease in the family. The non-synonymous mutation, p.G441R, affects a highly conserved amino acid residue, which is expected to cause a severe destabilization of the enzyme. Protein modeling demonstrated an impairment of the succinic semialdehyde (SSA) binding tunnel accessibility, and the anticipation of the protein folding stability and dynamics was a decrease in the free energy by 4.02 kcal/mol. Consistent with these in silico findings, excessive gamma -hydroxybutyrate (GHB) could be detected in patients' urine as the byproduct of the GABA pathway. SSADHD, Succinic semialdehyde dehydrogenase deficiency; GABA, gamma-aminobutyric acid; ALDH5A1, Aldehyde Dehydrogenase 5 Family Member A1; GHB, gamma -hydroxybutyrate; SSA, succinic semi aldehyde; WISC, Wechsler Intelligence Scale for Children; CNS, central nervous system ; EEG, electroencephalography; EEEF, empirical effective energy functions; ASD, autism spectrum disorder; ADHD, attention deficit hyperactivity disorder; IQ, intelligence quotient; EMG, electromyography; NCV, nerve conduction velocity; CP, cerebral palsy

    HLA-DRA is associated with Parkinson's disease in Iranian population

    Get PDF
    The rs3129882, a noncoding variant in HLA-DR, was found to be associated with Parkinson's disease (PD) using several genome-wide association studies. The aim of this replication study was to explore the relationship between this variant and PD in Iranian population. Genomic DNA was extracted from peripheral blood samples, and the rs3129882 SNP was genotyped using a PCR-RFLP method in 520 PD patients and 520 healthy Iranian controls. Significant differences were found in allele frequencies between patients and controls (χ2 = 4.64, P = 0.031). Under additive and dominant models, the association of the SNP with PD risk is significant, where the A allele was observed to be protective. The results suggest that rs3129882 polymorphism may be a risk factor for PD in Iranian. This is the first study reporting such an association in this population. More replication studies are needed to confirm this data. © 2014 John Wiley & Sons Ltd

    Autosomal recessive mental retardation: homozygosity mapping identifies 27 single linkage intervals, at least 14 novel loci and several mutation hotspots

    No full text
    Mental retardation (MR) has a worldwide prevalence of around 2% and is a frequent cause of severe disability. Significant excess of MR in the progeny of consanguineous matings as well as functional considerations suggest that autosomal recessive forms of MR (ARMR) must be relatively common. To shed more light on the causes of autosomal recessive MR (ARMR), we have set out in 2003 to perform systematic clinical studies and autozygosity mapping in large consanguineous Iranian families with non-syndromic ARMR (NS-ARMR). As previously reported (Najmabadi et al. in Hum Genet 121:43-48, 2007), this led us to the identification of 12 novel ARMR loci, 8 of which had a significant LOD score (OMIM: MRT5-12). In the meantime, we and others have found causative gene defects in two of these intervals. Moreover, as reported here, tripling the size of our cohort has enabled us to identify 27 additional unrelated families with NS-ARMR and single-linkage intervals; 14 of these define novel loci for non-syndromic ARMR. Altogether, 13 out of 39 single linkage intervals observed in our cohort were found to cluster at 6 different loci on chromosomes, i.e., 1p34, 4q27, 5p15, 9q34, 11p11-q13 and 19q13, respectively. Five of these clusters consist of two significantly overlapping linkage intervals, and on chr 1p34, three single linkage intervals coincide, including the previously described MRT12 locus. The probability for this distribution to be due to chance is only 1.14 x 10(-5), as shown by Monte Carlo simulation. Thus, in contrast to our previous conclusions, these novel data indicate that common molecular causes of NS-ARMR do exist, and in the Iranian population, the most frequent ones may well account for several percent of the patients. These findings will be instrumental in the identification of the underlying genes

    Hum. Genet.

    No full text
    Mental retardation (MR) has a worldwide prevalence of around 2% and is a frequent cause of severe disability. Significant excess of MR in the progeny of consanguineous matings as well as functional considerations suggest that autosomal recessive forms of MR (ARMR) must be relatively common. To shed more light on the causes of autosomal recessive MR (ARMR), we have set out in 2003 to perform systematic clinical studies and autozygosity mapping in large consanguineous Iranian families with non-syndromic ARMR (NS-ARMR). As previously reported (Najmabadi et al. in Hum Genet 121:43–48, 2007), this led us to the identification of 12 novel ARMR loci, 8 of which had a significant LOD score (OMIM: MRT5–12). In the meantime, we and others have found causative gene defects in two of these intervals. Moreover, as reported here, tripling the size of our cohort has enabled us to identify 27 additional unrelated families with NS-ARMR and single-linkage intervals; 14 of these define novel loci for non-syndromic ARMR. Altogether, 13 out of 39 single linkage intervals observed in our cohort were found to cluster at 6 different loci on chromosomes, i.e., 1p34, 4q27, 5p15, 9q34, 11p11–q13 and 19q13, respectively. Five of these clusters consist of two significantly overlapping linkage intervals, and on chr 1p34, three single linkage intervals coincide, including the previously described MRT12 locus. The probability for this distribution to be due to chance is only 1.14 × 10−5, as shown by Monte Carlo simulation. Thus, in contrast to our previous conclusions, these novel data indicate that common molecular causes of NS-ARMR do exist, and in the Iranian population, the most frequent ones may well account for several percent of the patients. These findings will be instrumental in the identification of the underlying genes

    Bi-allelic variants in CHKA cause a neurodevelopmental disorder with epilepsy and microcephaly

    No full text
    The Kennedy pathways catalyze the de novo synthesis of phosphatidylcholine and phosphatidylethanolamine, the most abundant components of eukaryotic cell membranes. In recent years, these pathways have moved into clinical focus since four out of ten genes involved have been associated with a range of autosomal recessive rare diseases such as a neurodevelopmental disorder with muscular dystrophy (CHKB), bone abnormalities and cone-rod dystrophy (PCYT1A), and spastic paraplegia (PCYT2, SELENOI). We identified six individuals from five families with bi-allelic variants in CHKA presenting with severe global developmental delay, epilepsy, movement disorders, and microcephaly. Using structural molecular modeling and functional testing of the variants in a in a cell-based S. cerevisiae model, we determined that these variants reduce the enzymatic activity of CHKA and confer a significant impairment of the first enzymatic step of the Kennedy pathway. In summary, we present CHKA as a novel autosomal recessive gene for a neurodevelopmental disorder with epilepsy and microcephaly
    corecore