82 research outputs found

    CUBES: application of image slicers to reformat the field for two spectral resolving powers

    Get PDF
    The Cassegrain U-Band Efficient Spectrograph (CUBES) is a high-efficiency spectrograph designed for observations from 305 to 400nm. It will be integrated at a Cassegrain focus of the Very Large Telescope (VLT). The image slicer technology is applied to reformat the field of view reducing the spectrograph entrance slit etendue and minimising the spectrograph volume and weight without slit losses. Two image slicers will provide CUBES with two spectral resolving powers: R≥20,000 for high resolution (HR) and R≥5,000 for low resolution (LR). Both image slicers are composed of two arrays of six spherical mirrors. For the HR mode, a rectangular field of view of 1.5arcsec by 10arcsec is reorganised into a slit of 0.19mm × 88mm; for the LR mode, a field of view of 6arcsec by 10arcsec is reformatted into a slit of 0.77mm × 88mm, with slicer mirrors of width 0.5mm and 2mm, respectively. CUBES is currently in the Preliminary Design Phase (Phase B). This communication presents the Conceptual (Phase A) design and the main performance for the HR and LR image slicers addressing the following technological challenges: compact layout with the minimum number of optical components to optimise throughput, near diffraction limited optical quality, telecentric design with overlapped exit pupils for all slices of the field of view, distribution of the slicer mirrors to reduce shadows and selection of the best substrate for the very short wavelengths at which CUBES will operate

    Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G

    Get PDF
    The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. Thus JE105 harbors ribosomes with only a single L12 dimer. Compared to MG1655, the parental strain with two L12 dimers, JE105 showed significant growth defect suggesting suboptimal function of the ribosomes with one L12 dimer. When tested in a cell-free reconstituted transcription–translation assay the synthesis of a full-length protein, firefly luciferase, was notably slower with JE105 70S ribosomes and 50S subunits. Further, in vitro analysis by fast kinetics revealed that single L12 dimer ribosomes from JE105 are defective in two major steps of translation, namely initiation and elongation involving translational GTPases IF2 and EF-G. Varying number of L12 dimers on the ribosome can be a mechanism in bacteria for modulating the rate of translation in response to growth condition
    corecore