14,145 research outputs found

    The accretion disk in the post period-minimum cataclysmic variable SDSS J080434.20+510349.2

    Full text link
    This study of SDSS0804 is primarily concerned with the double-hump shape in the light curve and its connection with the accretion disk in this bounce-back system. Time-resolved photometric and spectroscopic observations were obtained to analyze the behavior of the system between superoutbursts. A geometric model of a binary system containing a disk with two outer annuli spiral density waves was applied to explain the light curve and the Doppler tomography. Observations were carried out during 2008-2009, after the object's magnitude decreased to V~17.7(0.1) from the March 2006 eruption. The light curve clearly shows a sinusoid-like variability with a 0.07 mag amplitude and a 42.48 min periodicity, which is half of the orbital period of the system. In Sept. 2010, the system underwent yet another superoutburst and returned to its quiescent level by the beginning of 2012. This light curve once again showed a double-humps, but with a significantly smaller ~0.01mag amplitude. Other types of variability like a "mini-outburst" or SDSS1238-like features were not detected. Doppler tomograms, obtained from spectroscopic data during the same period of time, show a large accretion disk with uneven brightness, implying the presence of spiral waves. We constructed a geometric model of a bounce-back system containing two spiral density waves in the outer annuli of the disk to reproduce the observed light curves. The Doppler tomograms and the double-hump-shape light curves in quiescence can be explained by a model system containing a massive >0.7Msun white dwarf with a surface temperature of ~12000K, a late-type brown dwarf, and an accretion disk with two outer annuli spirals. According to this model, the accretion disk should be large, extending to the 2:1 resonance radius, and cool (~2500K). The inner parts of the disk should be optically thin in the continuum or totally void.Comment: 12 pages, 15 figures, accepted for publication in A&

    The massive multiple system HD 64315

    Get PDF
    The O6 Vn star HD 64315 is believed to belong to the star-forming region known as NGC 2467, but previous distance estimates do not support this association. We explore the multiple nature of this star with the aim of determining its distance, and understanding its connection to NGC 2467. A total of 52 high-resolution spectra have been gathered over a decade. We use their analysis, in combination with the photometric data from All Sky Automated Survey and Hipparcos catalogues, to conclude that HD 64315 is composed of at least two spectroscopic binaries, one of which is an eclipsing binary. HD 64315 contains two binary systems, one of which is an eclipsing binary. The two binaries are separated by 0.09 arcsec (or 500 AU) if the most likely distance to the system, around 5 kpc, is considered. The presence of fainter companions is not excluded by current observations. The non-eclipsing binary (HD 64315 AaAb) has a period of 2.70962901+/-0.00000021 d. Its components are hotter than those of the eclipsing binary, and dominate the appearance of the system. The eclipsing binary (HD 64315 BaBb) has a shorter period of 1.0189569+/-0.0000008 d. We derive masses of 14.6+-2.3 M_\odot for both components of the BaBb system. They are almost identical; both stars are overfilling their respective Roche lobes, and share a common envelope in an overcontact configuration. The non-eclipsing binary is a detached system composed of two stars with spectral types around O6 V with minimum masses of 10.8 M_\odot and 10.2 M_\odot, and likely masses aprox. 30 M_\odot. HD 64315 provides a cautionary tale about high-mass star isolation and multiplicity. Its total mass is likely above 90 M_\odot,but it seems to have formed without an accompanying cluster. It contains one the most massive overcontact binaries known, a likely merger progenitor in a very wide multiple system.Comment: 14 pages, 13 figures, 8 Table

    On Chern-Simons Quivers and Toric Geometry

    Full text link
    We discuss a class of 3-dimensional N=4 Chern-Simons (CS) quiver gauge models obtained from M-theory compactifications on singular complex 4-dimensional hyper-Kahler (HK) manifolds, which are realized explicitly as a cotangent bundle over two-Fano toric varieties V^2. The corresponding CS gauge models are encoded in quivers similar to toric diagrams of V^2. Using toric geometry, it is shown that the constraints on CS levels can be related to toric equations determining V^2.Comment: 14pg, 1 Figure, late

    Q fever: a new ocular manifestation

    Get PDF
    Q Fever is a zoonosis caused by Coxiella burnetii. Ocular manifestations are rare in this infection. We describe the case of a man complaining of an intense retro-orbital headache, fever, arthralgia, and bilateral loss of vision, who showed an anterior uveitis accompanied by exudative bilateral inferior retinal detachment and optic disk edema. At the beginning, a Vogt–Koyanagi–Harada (VKH) syndrome was suspected, but the patient was diagnosed with Q fever and treatment with doxycycline was initiated, with complete resolution after 2 weeks. We wondered if Q fever could unleash VKH syndrome or simulate a VKH syndrome by a similar immunological process

    Lepton Flavour Violating Heavy Higgs Decays Within the nuMSSM and Their Detection at the LHC

    Full text link
    Within the ν\nuMSSM, a Minimal Supersymmetric neutrino See-saw Model, Lepton Flavour Violating Higgs couplings are strongly enhanced at large tanβ\tan\beta (\gsim30), which can lead to BR(H0/A0τμ)O(104)(H^0/A^0 \to \tau\mu) \simeq O(10^{-4}), for M_{H^0/A^0}\gsim 160 GeV. Enhancements on the production of Higgs bosons, through the gluon fusion mechanism, ggH0/A0gg\to H^0/A^0, and the associated production channel gg,qqˉbbˉH0/A0gg,q\bar q\to b\bar bH^0/A^0, whose rates grow with tanβ\tan\beta, as well as the mass degeneracy that occurs between the H0H^0 and A0A^0 states in this regime, also contribute to further the possibilities to detect a heavy Higgs signal into τμ\tau\mu pairs. We show that the separation of τμ\tau\mu Higgs events from the background at the upcoming CERN Large Hadron Collider could be done for Higgs masses up to about 600 GeV for 300 fb1^{-1} of luminosity, for large tanβ\tan\beta values. However, even with as little as 10 fb1^{-1} one can probe H0/A0H^0/A^0 masses up to 400 GeV or so, if tanβ=60\tan\beta=60. Altogether, these processes then provide a new Higgs discovery mode as well as an independent test of flavour physics.Comment: 13 pages, 5 figure

    PTRF acts as an adipokine contributing to adipocyte dysfunctionality and ectopic lipid deposition

    Get PDF
    Adipose tissue (AT) expands under obesogenic conditions. Yet, when the growth exceeds a certain limit, AT becomes dysfunctional and surplus lipids start depositing ectopically. Polymerase I and transcription release factor (PTRF) has been proposed as a mechanism leading to a dysfunctional AT by decreasing the adipogenic potential of human adipocyte precursors. However, whether or not PTRF can be secreted by the adipocytes into the bloodstream is not yet known. For this work, PTRF presence was investigated in plasma. We also produced a recombinant PTRF (rPTRF) and examined its impact on the functional interactions between the adipocyte and the hepatocyte in vitro. We demonstrated that PTRF can be found in human plasma, and is at least in part, carried by exosomes. In vitro treatment with rPTRF increased the hypertrophy and senescence of 3T3-L1 adipocytes. In turn, those rPTRF-treated adipocytes increased lipid accumulation in hepatocytes. Lastly, we found a positive correlation between circulating PTRF and the concentration of PTRF in the visceral fat depot. All these findings point toward the presence of an enlarged and dysfunctional visceral adipose tissue which secretes PTRF. This circulating PTRF behaves as an adipokine and may partially contribute to the well-known detrimental effects of visceral fat accumulation

    Deposition of SiNx : H thin films by the electron cyclotron resonance and its application to Al/SiNx : H/Si structures

    Get PDF
    We have analyzed the electrical properties and bonding characteristics of SiNx:H thin films deposited at 200 degrees C by the electron cyclotron resonance plasma method. The films show the presence of hydrogen bonded to silicon (at the films with the ratio N/Si<1.33) or to nitrogen (for films where the ratio N/Si is higher than 1.33). In the films with the N/Si ratio of 1.38, the hydrogen content is 6 at. %. For compositions which are comprised of between N/Si=1.1 and 1.4, hydrogen concentration remains below 10 at. %. The films with N/Si=1.38 exhibited the better values of the electrical properties (resistivity, 6x10(13) Omega cm; and electric breakdown field, 3 MV/cm). We have used these films to make metal-insulator-semiconductor (MIS) devices on n-type silicon wafers. C-V measurements accomplished on the structures indicate that the interface trap density is kept in the range (3 - 5) x 10(11) cm(-2) eV(-1) for films with the N/Si ratio below 1.38. For films where the N/Si ratio is higher than 1.3, the trap density suddenly increases, following the same trend of the concentration of N-H bonds in the SiNx:H films. The results are explained on the basis of the model recently reported by Lucovsky [J. Vac. Sci. Technol. B 14, 2832 (1996)] for the electrical behavior of (oxide-nitride-oxide)/Si structures. The model is additionally supported by deep level transient spectroscopy measurements, that show the presence of silicon dangling bonds at the insulator/semiconductor interface (the so-called P-bN0 center), The concentration of these centers follows the same trend with the film composition of the interface trap density and, as a consequence, with the concentration of N-H bonds. This result further supports the N-H bonds located at the insulator/semiconductor interface which act as a precursor site to the defect generation of the type . Si=Si-3, i.e., the P-bN0 centers. A close relation between interface trap density, P-bN0 centers and N-H bond density is established
    corecore