4,235 research outputs found

    Classical and quantum behavior of dynamical systems defined by functions of solvable Hamiltonians

    Get PDF
    We discuss the classical and quantum mechanical evolution of systems described by a Hamiltonian that is a function of a solvable one, both classically and quantum mechanically. The case in which the solvable Hamiltonian corresponds to the harmonic oscillator is emphasized. We show that, in spite of the similarities at the classical level, the quantum evolution is very different. In particular, this difference is important in constructing coherent states, which is impossible in most cases. The class of Hamiltonians we consider is interesting due to its pedagogical value and its applicability to some open research problems in quantum optics and quantum gravity.Comment: Accepted for publication in American Journal of Physic

    Mobile Solar Energy Environmental Control System with Remote Accessibility

    Get PDF
    The proposed system, Mobile Solar Energy Environmental Control System with Remote Accessibility (mSEECS w/ RA), is based on the utilization of an already available Energy Storage Unit (ESU) in a Transport Unit System (TUS) to harness solar energy to provide a system to enhance the environment, safety and security of a TUS in a stationary or a mobile state by monitoring and controlling the operation of its onboard systems, and provide remote accessibility to know the state of affairs at any time. To relate to a real world application, the battery (ESU) of a vehicle (TUS) is underutilized most of the time while being stationary in a parking lot. Adding a solar panel to the vehicle with a charge controller provides a charging mechanism for the already installed battery. This allows for the operation of onboard systems, such as air circulation and surveillance, which are normally shutdown to avoid draining the battery. However, this calls for a sophisticated control and monitoring system which needs to monitor the battery to avoid draining it beyond a certain percent depending on the type of battery, control onboard systems to keep them operational at a specified level, and at the same time send alerts and provide remote access to users. Using a Raspberry Pi (RPi), a small hardened computer system, with add-on sensors to gauge key environmental variables, data can be retrieved from customized inputs and thresholds to generate signals to trigger other subsystems

    Elasticae in Killing submersions

    Get PDF
    Classical elastic curves (elastica) are variational objects with many applications in physics and engineering. Elastica in real space forms are well understood, but in other ambient spaces there are few known explicit examples, except geodesics. In this work, we study elastica living in the total space of a Killing submersion focusing on those curves whose osculating plane forms a constant angle with the vertical foliation (slant elastica). First, we compute the Euler–Lagrange equations for elastica and construct new examples of slant elastica in Killing submersions. Then, we completely classify the two main families of slant elastica in Bianchi–Cartan–Vranceanu ambient spaces (giving also explicit parametrizations)

    Wormholes as Basis for the Hilbert Space in Lorentzian Gravity

    Get PDF
    We carry out to completion the quantization of a Friedmann-Robertson-Walker model provided with a conformal scalar field, and of a Kantowski-Sachs spacetime minimally coupled to a massless scalar field. We prove that the Hilbert space determined by the reality conditions that correspond to Lorentzian gravity admits a basis of wormhole wave functions. This result implies that the vector space spanned by the quantum wormholes can be equipped with an unique inner product by demanding an adequate set of Lorentzian reality conditions, and that the Hilbert space of wormholes obtained in this way can be identified with the whole Hilbert space of physical states for Lorentzian gravity. In particular, all the normalizable quantum states can then be interpreted as superpositions of wormholes. For each of the models considered here, we finally show that the physical Hilbert space is separable by constructing a discrete orthonormal basis of wormhole solutions.Comment: 23 pages (Latex), Preprint IMAFF-RC-04-94, CGPG-94/5-

    Updatable Blockchains

    Get PDF
    Software updates for blockchain systems become a real challenge when they impact the underlying consensus mechanism. The activation of such changes might jeopardize the integrity of the blockchain by resulting in chain splits. Moreover, the software update process should be handed over to the community and this means that the blockchain should support updates without relying on a trusted party. In this paper, we introduce the notion of updatable blockchains and show how to construct blockchains that satisfy this definition. Informally, an updatable blockchain is a secure blockchain and in addition it allows to update its protocol preserving the history of the chain. In this work, we focus only on the processes that allow securely switching from one blockchain protocol to another assuming that the blockchain protocols are correct. That is, we do not aim at providing a mechanism that allows reaching consensus on what is the code of the new blockchain protocol. We just assume that such a mechanism exists (like the one proposed in NDSS 2019 by Zhang et. al), and show how to securely go from the old protocol to the new one. The contribution of this paper can be summarized as follows. We provide the first formal definition of updatable ledgers and propose the description of two compilers. These compilers take a blockchain and turn it into an updatable blockchain. The first compiler requires the structure of the current and the updated blockchain to be very similar (only the structure of the blocks can be different) but it allows for an update process more simple, efficient. The second compiler that we propose is very generic (i.e., makes few assumptions on the similarities between the structure of the current blockchain and the update blockchain). The drawback of this compiler is that it requires the new blockchain to be resilient against a specific adversarial behaviour and requires all the honest parties to be online during the update process. However, we show how to get rid of the latest requirement (the honest parties being online during the update) in the case of proof-of-work and proof-of-stake ledgers

    Probing Quantized Einstein-Rosen Waves with Massless Scalar Matter

    Get PDF
    The purpose of this paper is to discuss in detail the use of scalar matter coupled to linearly polarized Einstein-Rosen waves as a probe to study quantum gravity in the restricted setting provided by this symmetry reduction of general relativity. We will obtain the relevant Hamiltonian and quantize it with the techniques already used for the purely gravitational case. Finally we will discuss the use of particle-like modes of the quantized fields to operationally explore some of the features of quantum gravity within this framework. Specifically we will study two-point functions, the Newton-Wigner propagator, and radial wave functions for one-particle states.Comment: Accepted for publication in Physical Review

    Quantum Electromagnetic Wormholes and Geometrical Description of the Electric Charge

    Get PDF
    I present and discuss a class of solutions of the Wheeler-de Witt equation describing wormholes generated by coupling of gravity to the electromagnetic field for Kantowski-Sachs and Bianchi I spacetimes. Since the electric charge can be viewed as electric lines of force trapped in a finite region of spacetime, these solutions can be interpreted as the quantum corresponding of the Ein\-stein\--Ro\-sen\--Mis\-ner\--Whee\-ler electromagnetic geon.Comment: 13 pages, PLAIN TEX, Report No: SISSA 92/94/A (to appear in Phys. Rev. D15

    Pure States, Mixed States and Hawking Problem in Generalized Quantum Mechanics

    Get PDF
    This paper is the continuation of a study into the information paradox problem started by the author in his earlier works. As previously, the key instrument is a deformed density matrix in quantum mechanics of the early universe. It is assumed that the latter represents quantum mechanics with fundamental length. It is demonstrated that the obtained results agree well with the canonical viewpoint that in the processes involving black holes pure states go to the mixed ones in the assumption that all measurements are performed by the observer in a well-known quantum mechanics. Also it is shown that high entropy for Planck remnants of black holes appearing in the assumption of the Generalized Uncertainty Relations may be explained within the scope of the density matrix entropy introduced by the author previously. It is noted that the suggested paradigm is consistent with the Holographic Principle. Because of this, a conjecture is made about the possibility for obtaining the Generalized Uncertainty Relations from the covariant entropy bound at high energies in the same way as R. Bousso has derived Heisenberg uncertainty principle for the flat space.Comment: 12 pages,no figures,some corrections,new reference
    • …
    corecore