682 research outputs found

    Experimental study of the vidicon system for information recording using the wide-gap spark chamber of gamma - telescope gamma-I

    Get PDF
    The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared

    Inner radiation belt source of helium and heavy hydrogen isotopes

    Get PDF
    Nuclear interactions between inner zone protons and atoms in the upper atmosphere provide the main source of energetic H and He isotopes nuclei in the radiation belt. This paper reports on the specified calculations of these isotope intensities using various inner zone proton intensity models (AP-8 and SAMPEX/PET PSB97), the atmosphere drift-averaged composition and density model MSIS-90, and cross-sections of the interaction processes from the GNASH nuclear model code. To calculate drift-averaged densities and energy losses of secondaries, the particles were tracked in the geomagnetic field (modelled through IGRF-95) by integrating numerically the equation of the motion. The calculations take into account the kinematics of nuclear interactions along the whole trajectory of trapped proton. The comparison with new data obtained from the experiments on board RESURS-04 and MITA satellites and with data from SAMPEX and CRRES satellites taken during different phases of solar activity shows that the upper atmosphere is a sufficient source for inner zone helium and heavy hydrogen isotopes. The calculation results are energy spectra and angular distributions of light nuclear isotopes in the inner radiation belt that may be used to develop helium inner radiation belt model and to evaluate their contribution to SEU (single event upset) rates

    The measurements of light high-energy ions in NINA-2 experiment

    Get PDF
    The flux of energetic light ions at low altitude is both an important input and output for self-consistent calculations of albedo particles resulting from the interaction of trapped and cosmic ray particles, with the upper atmosphere. In addition, data on the flux of light ions are needed to evaluate radiation damages on space-borne instruments and on space mission crews. In spite of that, sources of data on the flux of energetic ions at LEO are roughly limited to the AP-8 model, CREME/CREME96 codes and the SAMPEX, NOAA/TIROS satellites. The existing and operational European SAC-C/ICARE and PROBA-1/SREM instruments could also be potential sources for proton data at LEO. Although AP-8 and SAMPEX/PSB97 may be publicly accessed through the SPENVIS, they exhibit an order of magnitude difference in low altitude proton fluxes and they do not contain helium fluxes. Therefore, improved light ion radiation models are still needed. <br><br> In this paper we present a procedure to identify and measure the energy of ions that are not stopped in the NINA-2 instrument. Moreover, problems related to particles that cross the instrument in the opposite direction are addressed and shown to be a possible cause of particle misidentification. Measuring fluxes of low abundance elements like energetic helium ions requires a good characterisation of all possible sources of backgrounds in the detector. Hints to determine the several contributions to the background are presented herein and may be applied to extract an order of magnitude of energetic ions fluxes from existing data sets, while waiting for dedicated high performance instruments

    Two years of flight of the Pamela experiment: results and perspectives

    Full text link
    PAMELA is a satellite borne experiment designed to study with great accuracy cosmic rays of galactic, solar, and trapped nature in a wide energy range (protons: 80 MeV-700 GeV, electrons 50 MeV-400 GeV). Main objective is the study of the antimatter component: antiprotons (80 MeV-190 GeV), positrons (50 MeV-270 GeV) and search for antinuclei with a precision of the order of 10−810^{-8}). The experiment, housed on board the Russian Resurs-DK1 satellite, was launched on June, 15th15^{th} 2006 in a 350×600km350\times 600 km orbit with an inclination of 70 degrees. In this work we describe the scientific objectives and the performance of PAMELA in its first two years of operation. Data on protons of trapped, secondary and galactic nature - as well as measurements of the December 13th13^{th} 2006 Solar Particle Event - are also provided.Comment: To appear on J. Phys. Soc. Jpn. as part of the proceedings of the International Workshop on Advances in Cosmic Ray Science March, 17-19, 2008 Waseda University, Shinjuku, Tokyo, Japa

    Time dependence of the electron and positron components of the cosmic radiation measured by the PAMELA experiment between July 2006 and December 2015

    Full text link
    Cosmic-ray electrons and positrons are a unique probe of the propagation of cosmic rays as well as of the nature and distribution of particle sources in our Galaxy. Recent measurements of these particles are challenging our basic understanding of the mechanisms of production, acceleration and propagation of cosmic rays. Particularly striking are the differences between the low energy results collected by the space-borne PAMELA and AMS-02 experiments and older measurements pointing to sign-charge dependence of the solar modulation of cosmic-ray spectra. The PAMELA experiment has been measuring the time variation of the positron and electron intensity at Earth from July 2006 to December 2015 covering the period for the minimum of solar cycle 23 (2006-2009) till the middle of the maximum of solar cycle 24, through the polarity reversal of the heliospheric magnetic field which took place between 2013 and 2014. The positron to electron ratio measured in this time period clearly shows a sign-charge dependence of the solar modulation introduced by particle drifts. These results provide the first clear and continuous observation of how drift effects on solar modulation have unfolded with time from solar minimum to solar maximum and their dependence on the particle rigidity and the cyclic polarity of the solar magnetic field.Comment: 11 pages, 2 figure

    A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation

    Full text link
    A new measurement of the cosmic ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a ten-fold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g. dark matter particle annihilations.Comment: 10 pages, 4 figures, 1 tabl

    Time dependence of the proton flux measured by PAMELA during the July 2006 - December 2009 solar minimum

    Full text link
    The energy spectra of galactic cosmic rays carry fundamental information regarding their origin and propagation. These spectra, when measured near Earth, are significantly affected by the solar magnetic field. A comprehensive description of the cosmic radiation must therefore include the transport and modulation of cosmic rays inside the heliosphere. During the end of the last decade the Sun underwent a peculiarly long quiet phase well suited to study modulation processes. In this paper we present proton spectra measured from July 2006 to December 2009 by PAMELA. The large collected statistics of protons allowed the time variation to be followed on a nearly monthly basis down to 400 MV. Data are compared with a state-of-the-art three-dimensional model of solar modulation.Comment: 17 pages, 5 figures, 1 table, to appear in Astrophysical Journal. Corrected two elements of Table

    Time dependence of the e^- flux measured by PAMELA during the July 2006 - December 2009 solar minimum

    Full text link
    Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy not accessible from the study of the cosmic-ray nuclear components due to their differing diffusion and energy-loss processes. However, when measured near Earth, the effects of propagation and modulation of galactic cosmic rays in the heliosphere, particularly significant for energies up to at least 30 GeV, must be properly taken into account. In this paper the electron (e^-) spectra measured by PAMELA down to 70 MeV from July 2006 to December 2009 over six-months time intervals are presented. Fluxes are compared with a state-of-the-art three-dimensional model of solar modulation that reproduces the observations remarkably well.Comment: 40 pages, 18 figures, 1 tabl

    Geomagnetically trapped, albedo and solar energetic particles: trajectory analysis and flux reconstruction with PAMELA

    Full text link
    The PAMELA satellite experiment is providing comprehensive observations of the interplanetary and magnetospheric radiation in the near-Earth environment. Thanks to its identification capabilities and the semi-polar orbit, PAMELA is able to precisely measure the energetic spectra and the angular distributions of the different cosmic-ray populations over a wide latitude region, including geomagnetically trapped and albedo particles. Its observations comprise the solar energetic particle events between solar cycles 23 and 24, and the geomagnetic cutoff variations during magnetospheric storms. PAMELA's measurements are supported by an accurate analysis of particle trajectories in the Earth's magnetosphere based on a realistic geomagnetic field modeling, which allows the classification of particle populations of different origin and the investigation of the asymptotic directions of arrival.Comment: Accepted for publication in Advances in Space Research, 2016. 21 pages, 7 figure
    • …
    corecore