21 research outputs found

    Depression of glutamate and GABA release by presynaptic GABAB receptors in the entorhinal cortex in normal and chronically epileptic rats

    Get PDF
    Presynaptic GABAB receptors (GABABR) control glutamate and GABA release at many synapses in the nervous system. In the present study we used whole-cell patch-clamp recordings of spontaneous excitatory and inhibitory synaptic currents in the presence of TTX to monitor glutamate and GABA release from synapses in layer II and V of the rat entorhinal cortex (EC)in vitro. In both layers the release of both transmitters was reduced by application of GABABR agonists. Quantitatively, the depression of GABA release in layer II and layer V, and of glutamate release in layer V was similar, but glutamate release in layer II was depressed to a greater extent. The data suggest that the same GABABR may be present on both GABA and glutamate terminals in the EC, but that the heteroreceptor may show a greater level of expression in layer II. Studies with GABABR antagonists suggested that neither the auto- nor the heteroreceptor was consistently tonically activated by ambient GABA in the presence of TTX. Studies in EC slices from rats made chronically epileptic using a pilocarpine model of temporal lobe epilepsy revealed a reduced effectiveness of both auto- and heteroreceptor function in both layers. This could suggest that enhanced glutamate and GABA release in the EC may be associated with the development of the epileptic condition. Copyright © 2006 S. Karger AG

    Sub region-specific modulation of synchronous neuronal burst firing after a kainic acid insult in organotypic hippocampal cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excitotoxicity occurs in a number of pathogenic states including stroke and epilepsy. The adaptations of neuronal circuits in response to such insults may be expected to play an underlying role in pathogenesis. Synchronous neuronal firing can be induced in isolated hippocampal slices and involves all regions of this structure, thereby providing a measure of circuit activity. The effect of an excitotoxic insult (kainic acid, KA) on Mg<sup>2+</sup>-free-induced synchronized neuronal firing was tested in organotypic hippocampal culture by measuring extracellular field activity in CA1 and CA3.</p> <p>Results</p> <p>Within 24 hrs of the insult regional specific changes in neuronal firing patterns were evident as: (i) a dramatic <it>reduction </it>in the ability of CA3 to generate firing; and (ii) a contrasting <it>increase </it>in the frequency and duration of synchronized neuronal firing events in CA1. Two distinct processes underlie the increased propensity of CA1 to generate synchronized burst firing; a lack of ability of the CA3 region to 'pace' CA1 resulting in an increased frequency of synchronized events; and a change in the 'intrinsic' properties limited to the CA1 region, which is responsible for increased event duration. Neuronal quantification using NeuN immunoflurescent staining and stereological confocal microscopy revealed no significant cell loss in hippocampal sub regions, suggesting that changes in the properties of neurons within this region were responsible for the KA-mediated excitability changes.</p> <p>Conclusion</p> <p>These results provide novel insight into adaptation of hippocampal circuits following excitotoxic injury. KA-mediated disruption of the interplay between CA3 and CA1 clearly increases the propensity to synchronized firing in CA1.</p

    Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice

    Get PDF
    Neuropeptide Y is implicated in energy homeostasis, and contributes to obesity when hypothalamic levels remain chronically elevated. To investigate the specific role of hypothalamic Y2 receptors in this process, we used a conditional Y2 knockout model, using the Cre-lox system and adenoviral delivery of Cre-recombinase. Hypothalamus-specific Y2-deleted mice showed a significant decrease in body weight and a significant increase in food intake that was associated with increased mRNA levels for the orexigenic NPY and AgRP, as well as the anorexic proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) in the arcuate nucleus. These hypothalamic changes persisted until at least 34 days after Y2 deletion, yet the effect on body weight and food intake subsided within this time. Plasma concentrations of pancreatic polypeptide and corticosterone were 3- to 5-fold increased in hypothalamus-specific Y2 knockout mice. Germ-line Y2 receptor knockout also produced a significant increase in plasma levels of pancreatic polypeptide. However, these mice differed from conditional knockout mice in that they showed a sustained reduction in body weight and adiposity associated with increased NPY and AgRP but decreased POMC and CART mRNA levels in the arcuate nucleus. The transience of the observed effects on food intake and body weight in the hypothalamus-specific Y2 knockout mice, and the difference of this model from germ-line Y2 knockout mice, underline the importance of conditional models of gene deletion, because developmental, secondary, or extrahypothalamic mechanisms may mask such effects in germ-line knockouts

    Neuropeptide Y and Epilepsy

    No full text
    It is a central tenet of the epilepsy field that seizures result from the imbalance of excitation over inhibition 1. The bulk of excitation is mediated by the neurotransmitter glutamate, whereas inhibition results mainly from the actions of γ-aminobutyric acid (GABA). In the neocortex and hippocampus, the intrinsic sources of GABA are the interneurons, which lately have come under intense scrutiny. It has become clear that a large number of distinct types of interneurons can be differentiated in part by the array of neuropeptides they coexpress (cf. 2). Evidence is emerging that the neuropeptide complement of interneurons plays important roles in the way that interneurons regulate excitability. Here we discuss what is known about the relation of one well-characterized neuropeptide, neuropeptide Y (NPY), and epilepsy in experimental animals and humans, and suggest possible roles for the receptors as targets for the control of excessive excitation in epilepsy
    corecore