564 research outputs found
Comparative Analysis among DSP and FPGA-based Control Capabilities in PWM Power Converters
PWM power converters are close to be mature for standard diffusion. New FPGA technologies could now realise at best the digital control key-points: flexible performance and time to market. The paper deals with the new digital control properties of FPGA-based techniques. On the basis of reference structures, a comparative analysis is carried-out trading-off dynamic performances and immunity to PWM environment. All possible sampled control or DSP techniques are firstly analysed and compared to each other. A breakthrough concept for FPGAs is defined, definitely solving for PWM feedback immunity by practical over-sampling and parallel processing while improving dynamic performances. Simulation tests and the application of dead-beat control clearly point-out the respective dynamic properties
A Comparison of Low Read Depth QuantSeq 3 ' Sequencing to Total RNA-Seq in FUS Mutant Mice
Transcriptomics is a developing field with new methods of analysis being produced which may hold advantages in price, accuracy, or information output. QuantSeq is a form of 3′ sequencing produced by Lexogen which aims to obtain similar gene-expression information to RNA-seq with significantly fewer reads, and therefore at a lower cost. QuantSeq is also able to provide information on differential polyadenylation. We applied both QuantSeq at low read depth and total RNA-seq to the same two sets of mouse spinal cord RNAs, each comprised by four controls and four mutants related to the neurodegenerative disease amyotrophic lateral sclerosis. We found substantial differences in which genes were found to be significantly differentially expressed by the two methods. Some of this difference likely due to the difference in number of reads between our QuantSeq and RNA-seq data. Other sources of difference can be explained by the differences in the way the two methods handle genes with different primary transcript lengths and how likely each method is to find a gene to be differentially expressed at different levels of overall gene expression. This work highlights how different methods aiming to assess expression difference can lead to different results
Interleukin-1 receptor antagonist gene (IL-1RN) polymorphism is a predictive factor of clinical pregnancy after IVF
BACKGROUND Only 25% of IVF transfer cycles lead to a clinical pregnancy, calling for continued technical progress but also more in depth analysis of patients' individual characteristics. The interleukin-1 (IL-1) system and matrix metalloproteinases (MMPs) are strongly implicated in embryo implantation. The genes coding for IL-1Ra (gene symbol IL-1RN), IL-1β, MMP2 and MMP9 bear functional polymorphisms. We analysed the maternal genetic profile at these polymorphic sites in IVF patients, to determine possible correlations with IVF outcome. METHODS One hundred and sixty women undergoing an IVF cycle were enrolled and a buccal smear was obtained. The presence of IL-1RN variable number of tandem repeats and IL-1B + 3953, MMP2-1306 and MMP9-1562 single nucleotide substitutions were determined. Patients were divided into pregnancy failures (119), biochemical pregnancies (8) and clinical pregnancies (33). RESULTS There was a 40% decrease in IL-1RN*2 allele frequency (P = 0.024) and a 45% decrease in IL-1RN*2 carrier status in the clinical pregnancy group as compared to the pregnancy failure group (P = 0.017). This decrease was still statistically significant after a multivariate logistic regression analysis. The likelihood of a clinical pregnancy was decreased accordingly in IL-1RN*2 carriers: odds ratio = 0.349, 95% confidence interval = 0.2-0.8, P = 0.017. The IL-1B, MMP2 and MMP9 polymorphisms showed no correlation with IVF outcome. CONCLUSIONS IL-1RN*2 allele carriage is associated with a poor prognosis of achieving a pregnancy after IV
Anaplastic Lymphoma Kinase Receptor: Possible Involvement in Anorexia Nervosa
The pathophysiology of Anorexia Nervosa (AN) has not been fully elucidated. Anaplastic lymphoma kinase (ALK) receptor is a protein-tyrosine kinase mainly known as a key oncogenic driver. Recently, a genetic deletion of ALK in mice has been found to increase energy expenditure and confers resistance to obesity in these animals, suggesting its role in the regulation of thinness. Here, we investigated the expression of ALK and the downstream intracellular pathways in female rats subjected to the activity-based anorexia (ABA) model, which reproduces important features of human AN. In the hypothalamic lysates of ABA rats, we found a reduction in ALK receptor expression, a downregulation of Akt phosphorylation, and no change in the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) phosphorylation. After the recovery from body weight loss, ALK receptor expression returned to the control baseline values, while it was again suppressed during a second cycle of ABA induction. Overall, this evidence suggests a possible involvement of the ALK receptor in the pathophysiology of AN, that may be implicated in its stabilization, resistance, and/or its exacerbation
H-Bridge Converter as Basic Switching Topology Workbench in Power Electronics Teaching
This article deals with an effective power electronics learning setup based on a Full-Bridge converter used to teach electrical energy conversion experimentally. In the proposed learning by doing methodology, the hardware and the software are properly mixed in order to obtain an easy-to-use experimental learning environment. In this paper, the H-Bridge is the fundamental brick to
build students’ knowledge on the main topics of power electronics converter circuit in different operative conditions. This H-Bridge comes with a reconfigurable output LCL to achieve several basic DC-DC powerconverters topologies. Converter current and voltage switching behavior can be investigated using the proposed setup. Furthermore, the friendly hardware and software
set-up allows studying the converter modulation and control techniques of the different power electronics circuits
C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins
An expanded GGGGCC repeat in C9orf72 is the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis. A fundamental question is whether toxicity is driven by the repeat RNA itself and/or by dipeptide repeat proteins generated by repeat-associated, non-ATG translation. To address this question we developed in vitro and in vivo models to dissect repeat RNA and dipeptide repeat protein toxicity. Expression of pure repeats in Drosophila caused adult-onset neurodegeneration attributable to poly-(glycine-arginine) proteins. Thus, expanded repeats promoted neurodegeneration through neurotoxic proteins. Expression of individual dipeptide repeat proteins with a non-GGGGCC RNA sequence showed both poly-(glycine-arginine) and poly-(proline-arginine) proteins caused neurodegeneration. These findings are consistent with a dual toxicity mechanism, whereby both arginine-rich proteins and repeat RNA contribute to C9orf72-mediated neurodegeneration
Crucial role of α4 and α6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration
The identification of the molecular mechanisms involved in nicotine addiction and its cognitive consequences is a worldwide priority for public health. Novel in vivo paradigms were developed to match this aim. Although the beta2 subunit of the neuronal nicotinic acetylcholine receptor (nAChR) has been shown to play a crucial role in mediating the reinforcement properties of nicotine, little is known about the contribution of the different alpha subunit partners of beta2 (i.e., alpha4 and alpha6), the homo-pentameric alpha7, and the brain areas other than the ventral tegmental area (VTA) involved in nicotine reinforcement. In this study, nicotine (8.7-52.6 microg free base/kg/inf) self-administration was investigated with drug-naive mice deleted (KO) for the beta2, alpha4, alpha6 and alpha7 subunit genes, their wild-type (WT) controls, and KO mice in which the corresponding nAChR subunit was selectively re-expressed using a lentiviral vector (VEC mice). We show that WT mice, beta2-VEC mice with the beta2 subunit re-expressed exclusively in the VTA, alpha4-VEC mice with selective alpha4 re-expression in the VTA, alpha6-VEC mice with selective alpha6 re-expression in the VTA, and alpha7-KO mice promptly self-administer nicotine intravenously, whereas beta2-KO, beta2-VEC in the substantia nigra, alpha4-KO and alpha6-KO mice do not respond to nicotine. We thus define the necessary and sufficient role of alpha4beta2- and alpha6beta2-subunit containing nicotinic receptors (alpha4beta2*- and alpha6beta2*-nAChRs), but not alpha7*-nAChRs, present in cell bodies of the VTA, and their axons, for systemic nicotine reinforcement in drug-naive mic
Spectroscopic follow-up of a subset of the Gaia/IPHAS catalogue of Hα-excess sources
State-of-the-art techniques to identify Hα emission-line sources in narrow-band photometric surveys consist of searching for Hα excess with reference to nearby objects in the sky (position-based selection). However, while this approach usually yields very few spurious detections, it may fail to select intrinsically faint and/or rare Hα-excess sources. In order to obtain a more complete representation of the heterogeneous emission-line populations, we recently developed a technique to find outliers relative to nearby objects in the colour–magnitude diagram (CMD-based selection). By combining position-based and CMD-based selections, we built an updated catalogue of Hα-excess candidates in the Northern Galactic Plane. Here, we present spectroscopic follow-up observations and classification of 114 objects from this catalogue that enables us to test our novel selection method. Out of the 70 spectroscopically confirmed Hα-emitters in our sample, 15 were identified only by the CMD-based selection, and would have been thus missed by the classic position-based technique. In addition, we explore the distribution of our spectroscopically confirmed emitters in the Gaia CMD. This information can support the classification of emission-line sources in large surveys such as the upcoming WEAVE and 4-m Multi-Object Spectroscopic Telescope, especially if augmented with the introduction of other colours
Whole genome methylation profiles as independent markers of survival in stage IIIc melanoma patients
Background: The clinical course of cutaneous melanoma (CM) can differ significantly for patients with identical stages of disease, defined clinico-pathologically, and no molecular markers differentiate patients with such a diverse prognosis. This study aimed to define the prognostic value of whole genome DNA methylation profiles in stage III CM.Methods: Genome-wide methylation profiles were evaluated by the Illumina Human Methylation 27 BeadChip assay in short-term neoplastic cell cultures from 45 stage IIIC CM patients. Unsupervised K-means partitioning clustering was exploited to sort patients into 2 groups based on their methylation profiles. Methylation patterns related to the discovered groups were determined using the nearest shrunken centroid classification algorithm. The impact of genome-wide methylation patterns on overall survival (OS) was assessed using Cox regression and Kaplan-Meier analyses.Results: Unsupervised K-means partitioning by whole genome methylation profiles identified classes with significantly different OS in stage IIIC CM patients. Patients with a " favorable" methylation profile had increased OS (P = 0.001, log-rank = 10.2) by Kaplan-Meier analysis. Median OS of stage IIIC patients with a " favorable" vs. " unfavorable" methylation profile were 31.5 and 10.4 months, respectively. The 5 year OS for stage IIIC patients with a " favorable" methylation profile was 41.2% as compared to 0% for patients with an " unfavorable" methylation profile. Among the variables examined by multivariate Cox regression analysis, classification defined by methylation profile was the only predictor of OS (Hazard Ratio = 2.41, for " unfavorable" methylation profile; 95% Confidence Interval: 1.02-5.70; P = 0.045). A 17 gene methylation signature able to correctly assign prognosis (overall error rate = 0) in stage IIIC patients on the basis of distinct methylation-defined groups was also identified.Conclusions: A discrete whole-genome methylation signature has been identified as molecular marker of prognosis for stage IIIC CM patients. Its use in daily practice is foreseeable, and promises to refine the comprehensive clinical management of stage III CM patients. © 2012 Sigalotti et al.; licensee BioMed Central Ltd
XGAPS: a sub-arcsec cross-match of galactic plane surveys
We present a sub-arcsec cross-match of Gaia Data Release 3 (DR3) against the INT Galactic Plane Surveys (IGAPS) and the United Kingdom Infrared Deep Sky Survey (UKIDSS). The resulting cross-match of Galactic Plane Surveys (XGAPS) provides additional precise photometry (URGO, g, r, i, Hα, J, H, and K) to the Gaia photometry. In building the catalogue, proper motions given in Gaia DR3 are wound back to match the epochs of the IGAPS constituent surveys (INT Photometric HαSurvey of the Northern Galactic Plane, IPHAS, and the UV-Excess Survey of the Northern Galactic Plane, UVEX) and UKIDSS, ensuring high-proper motion objects are appropriately cross-matched. The catalogue contains 33 987 180 sources. The requirement of >3σ parallax detection for every included source means that distances out to 1–1.5 kpc are well covered. In producing XGAPS, we have also trained a Random Forest classifier to discern targets with problematic astrometric solutions. Selection cuts based on the classifier results can be used to clean colour-magnitude and colour–colour diagrams in a controlled and justified manner, as well as producing subsets of astrometrically reliable targets. We provide XGAPS as a 111 column table. Uses of the catalogue include the selection of Galactic targets for multi-object spectroscopic surveys as well as identification of specific Galactic populations
- …