389 research outputs found
Probing Hyperbolic and Surface Phonon-Polaritons in 2D materials using Raman Spectroscopy
The hyperbolic dispersion relation of phonon-polaritons (PhPol) provides
high-momentum states, highly directional propagation, subdiffractional
confinement, large optical density of states, and enhanced light-matter
interactions. In this work, we use Raman spectroscopy in the convenient
backscattering configuration to probe PhPol in GaSe, a 2D material presenting
two hyperbolic regions separated by a \textit{double} reststrahlen band. By
varying the incidence angle, dispersion relations are revealed. Raman spectra
calculations confirm the observation of one surface and two extraordinary
guided polaritons and matches the evolution of PhPol frequency as a function of
confinement. Resonant excitation close to the excitonic state singularly exalts
the scattering efficiency of PhPol. Raman spectroscopy of PhPol in
non-centrosymmetry 2D materials does not require any wavevector matching
strategies. Widely available, it may accelerate the development of MIR
nanophotonic devices and applications
Origin of the low frequency radiation emitted by radiative polaritons excited by infrared radiation in planar La2O3 films
Upon excitation in thin oxide films by infrared radiation, radiative polaritons are formed with complex angular frequency ω, according to the theory of Kliewer and Fuchs (1966 Phys. Rev. 150 573). We show that radiative polaritons leak radiation with frequency ωi to the space surrounding the oxide film. The frequency ωi is the imaginary part of ω. The effects of the presence of the radiation leaked out at frequency ωi are observed experimentally and numerically in the infrared spectra of La2O3 films on silicon upon excitation by infrared radiation of the 0TH type radiative polariton. The frequency ωi is found in the microwave to far infrared region, and depends on the oxide film chemistry and thickness. The presented results might aid in the interpretation of fine structures in infrared and, possibly, optical spectra, and suggest the study of other similar potential sources of electromagnetic radiation in different physical scenarios
Complete quantum control of exciton qubits bound to isoelectronic centres
In recent years, impressive demonstrations related to quantum information processing have been realized. The scalability of quantum interactions between arbitrary qubits within an array remains however a significant hurdle to the practical realization of a quantum computer. Among the proposed ideas to achieve fully scalable quantum processing, the use of photons is appealing because they can mediate long-range quantum interactions and could serve as buses to build quantum networks. Quantum dots or nitrogen-vacancy centres in diamond can be coupled to light, but the former system lacks optical homogeneity while the latter suffers from a low dipole moment, rendering their large-scale interconnection challenging. Here, through the complete quantum control of exciton qubits, we demonstrate that nitrogen isoelectronic centres in GaAs combine both the uniformity and predictability of atomic defects and the dipole moment of semiconductor quantum dots. This establishes isoelectronic centres as a promising platform for quantum information processing
Effects of Metallic, Semiconducting, and Insulating Substrates on the Coupling Involving Radiative Polaritons in Thin Oxide Films
Through simulations, this work explores the effects of conducting, semiconducting, and insulating substrates on the absorption of infrared radiation by radiative polaritons in oxide layers with thicknesses that range from 30 nm to 9 μm. Using atomic layer deposition, oxide layers can be formed in the nanometer scale. Our results suggest that the chemistry and conductivity of the substrate determine the amount of absorption by radiative polaritons in oxide layers thinner than the skin depth. The effects of the chemistry and conductivity of the substrate are especially effective for oxide films thinner than about 250 nm, which we label as the substrate sensitive thickness of the oxide film
Initiation and evolution of phase separation in heteroepitaxial InAlAs films
We have investigated the initiation and evolution of phase separation in heteroepitaxial InAlAs films. In misfit-free InAlAs layers, cross-sectional scanning tunneling microscopy (XSTM) reveals the presence of isotropic nanometer-sized clusters. For lattice-mismatched InAlAs layers with 1.2% misfit, quasiperiodic contrast modulations perpendicular to the growth direction are apparent. Interestingly, these lateral modulations are apparently initiated within the first few bilayers of film growth, and both the amplitude and wavelength of the modulations increase with film thickness. The saturation value of the modulation wavelength determined from XSTM coincides with the lateral superlattice period determined from (002) x-ray reciprocal space maps, suggesting that the lateral modulation wavelength represents a periodic composition variation. Together, these results suggest that phase separation in the heteroepitaxial InAlAs thin-film system is a misfit-driven kinetic process initiated by random compositional nonuniformities, which later develop into coupled compositional and surface morphological variations. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69359/2/APPLAB-80-18-3292-1.pd
Graphene-based photovoltaic cells for near-field thermal energy conversion
Thermophotovoltaic devices are energy-conversion systems generating an
electric current from the thermal photons radiated by a hot body. In far field,
the efficiency of these systems is limited by the thermodynamic
Schockley-Queisser limit corresponding to the case where the source is a black
body. On the other hand, in near field, the heat flux which can be transferred
to a photovoltaic cell can be several orders of magnitude larger because of the
contribution of evanescent photons. This is particularly true when the source
supports surface polaritons. Unfortunately, in the infrared where these systems
operate, the mismatch between the surface-mode frequency and the semiconductor
gap reduces drastically the potential of this technology. Here we show that
graphene-based hybrid photovoltaic cells can significantly enhance the
generated power paving the way to a promising technology for an intensive
production of electricity from waste heat.Comment: 5 pages, 4 figure
Shape-dependence of near-field heat transfer between a spheroidal nanoparticle and a flat surface
We study the radiative heat transfer between a spheroidal metallic
nanoparticle and a planar metallic sample for near- and far-field distances. In
particular, we investigate the shape dependence of the heat transfer in the
near-field regime. In comparison with spherical particles, the heat transfer
typically varies by factors between 1/2 and 2 when the particle is deformed
such that its volume is kept constant. These estimates help to quantify the
deviation of the actual heat transfer recorded by a near-field scanning thermal
microscope from the value provided by a dipole model which assumes a perfectly
spherical sensor
Burkholderia from fungus gardens of fungus-growing ants produce antifungals that inhibit the specialized parasite Escovopsis.
Within animal-associated microbiomes, the functional roles of specific microbial taxa are often uncharacterized. Here, we use the fungus-growing ant system, a model for microbial symbiosis, to determine the potential defensive roles of key bacterial taxa present in the ants’ fungus gardens. Fungus gardens serve as an external digestive system for the ants, with mutualistic fungi in the genus Leucoagaricus converting the plant substrate into energy for the ants. The fungus garden is host to specialized parasitic fungi in the genus Escovopsis. Here, we examine the potential role of Burkholderia spp. that occur within ant fungus gardens in inhibiting Escovopsis. We isolated members of the bacterial genera Burkholderia and Paraburkholderia from 50% of the 52 colonies sampled, indicating that members of the family Burkholderiaceae are common inhabitants in the fungus gardens of a diverse range of fungus-growing ant genera. Using antimicrobial inhibition bioassays, we found that 28 out of 32 isolates inhibited at least one Escovopsis strain with a zone of inhibition greater than 1cm. Genomic assessment of fungus garden-associated Burkholderiaceae indicated that isolates with strong inhibition all belonged to the genus Burkholderia and contained biosynthetic gene clusters that encoded the production of two antifungals: burkholdine1213 and pyrrolnitrin. Organic extracts of cultured isolates confirmed that these compounds are responsible for antifungal activities that inhibit Escovopsis but, at equivalent concentrations, not Leucoagaricus spp. Overall, these new findings, combined with previous evidence, suggest that members of the fungus garden microbiome play an important role in maintaining the health and function of fungus-growing ant colonies.National Institutes of Health/[U19 TW009872]/NIH/Estados UnidosNational Institutes of Health/[U19 AI142720]/NIH/Estados UnidosNational Institutes of Health/[T32 AI055397]/NIH/Estados UnidosNational Science Foundation/[DEB-1927155]/NSF/Estados UnidosSão Paulo Research Foundation/[2013/50954-0]/FAPESP/BrasilUCR::VicerrectorÃa de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en Estructuras Microscópicas (CIEMIC)UCR::VicerrectorÃa de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigación en BiologÃa Celular y Molecular (CIBCM)UCR::VicerrectorÃa de Docencia::Salud::Facultad de Medicina::Escuela de Medicin
- …