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Abstract 

Upon excitation in thin oxide films by infrared radiation, radiative polaritons are formed 

with complex angular frequency ω , according to the theory of Kliewer and Fuchs (1966).  We 

show that radiative polaritons leak radiation with frequency iω  to the space surrounding the 

oxide film.  The frequency iω  is the imaginary part of ω .  The effects of the presence of the 

radiation leaked out at frequency iω  are observed experimentally and numerically in infrared 

spectra of La2O3 films on silicon upon the excitation by infrared radiation of the 0TH type 

radiative polariton.  The frequency iω  is found in the microwave to far infrared region, and 

depends on the oxide film chemistry and thickness.  The presented results might aid in the 

interpretation of fine structures in infrared and, possibly, optical spectra, and suggest the study of 

other similar potential sources of electromagnetic radiation in different physical scenarios. 
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1. Introduction. 

Nature has developed various mechanisms to produce radiation, such as blackbody 

radiation [1, 2], inter-band electron transitions between energy levels in atoms or molecules [3-

5], the acceleration of electrons or charged particles [6-11], radiative nuclear reactions [12], and 

Cherenkov radiation [13, 14].  Recently, radiation was found to be originated by quasi-particles 

called polaritons.  Specifically, photoluminescence [15] and laser radiation [16] in the near 

infrared (NIR) and visible regions were observed at low temperature (∼ 10 K) in periodically 

patterned semiconducting samples and micro-cavities, where polaritons can propagate.  Here we 

describe an additional route nature follows to produce radiation from polaritons: the outburst of 

far IR (FIR) or microwave radiation by radiative polaritons (RPs) at room temperature in simple 

planar dielectric films, where polaritons cannot propagate.  Indeed, RPs [17] and radiative 

plasmons [18, 19] are unable to propagate in planar dielectric layers because of the lack of 

periodic structures acting as wave-guides and enabling constructive interference [20].  The RPs 

have a group velocity faster than the speed of light in vacuum c  [17-19], but their inability to 

propagate suggests that they do not behave as superluminal wave pockets [21, 22].  Therefore, 

this work describes the energy-release mechanism in RPs with group velocity faster than c  upon 

generation in planar dielectric layers illuminated by IR radiation.  Radiative polaritons are widely 

used to aid in the interpretation of IR spectra [23-26], nevertheless the origin of the radiation 

generated during their excitation by IR radiation in thin oxide films or slabs has so far not been 

investigated. 
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2. The hypothesis on the origin of the radiation emitted by radiative polaritons. 

We consider RPs excited in thin planar oxide films [23] by IR radiation [17].  The 

dispersion relation in Fig. 1, where ω  and xk  are real quantities, is divided into two regions.  

The surface phonon-polaritons (SPPs) [20, 27] appear to the right-hand side of the light-line 

c
kx

=
ω

 in the 
xk−ω  plane, where ω  is the angular frequency, and 

xk  is a component of the 

wave-vector k  parallel to the oxide film surface [17, 20].  The SPPs are generated in dielectric 

layers with periodic structures, where they can propagate [28].  On the other hand, the RPs 

appear to the left-hand side of the light-line in Fig. 1.  The left-hand side of the light-line is the 

long-wavelength (λ) section of the dispersion relation plane, where 0
2

→=
λ

π
xk  [17, 20].  

Moreover, the prominent 0TH type-RP of interest here appears next to the longitudinal optical 

(LO) phonon frequency 
LOω  [17, 24].  At this frequency, the oxide dielectric function ( )νε , 

where ν  is a real frequency, reaches a minimum.  In this condition, if the polariton would 

propagate, its group ( gv ) and phase ( phv ) velocities would coincide, such that c
k

vv
x

phg >==
ω

 

[17].  However, the dielectric layers supporting RPs are planar.  They do not have periodic 

structures acting as wave-guides and enabling constructive interference, which would promote 

RPs propagation [15, 16, 28].  Therefore, RPs dissipate [29] their potential energy and conserve 

their momentum, 
c

ωh
=p , by acquiring a complex angular frequency ir Iωωω +=  and wave-

vector xixrx Ikkk +=  [17, 18, 30, 31].  In these expressions, I  is the imaginary unit and the 

subscripts r  and i  refer to real and imaginary parts, respectively.  Radiative polaritons absorb IR 

radiation at rω , as observed in thin planar dielectric films and slabs [23-26].  In this research, we 
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address the energy-release mechanism enfolded in the existence of the imaginary angular 

frequency iω  of RPs described as plane waves with complex angular frequency ω  [17]. 

The current literature associates imaginary angular frequencies with phase instabilities, 

for example in phase transitions [32], and to waves moving away from their source, for example 

in quasi-normal modes in gravitational waves [33].  For RPs, the physical implications of the 

existence of the imaginary frequency 
iω  are rooted in their polarization vector P, which has a 

plane wave type of space/time dependence [17, 20].  Therefore 
( )txki xe

ω−
∝P , and, since for RPs 

ω  and 
xk  are complex [17], it occurs that: 

( ) ( ) ( ) ( )txktxkitixiktxki iixrrxiixrrx eeetx
ωωωω −−−−+−

=∝,P .                                                                    (1) 

Physically, rω  and 
iω  can be determined from the center and half-width of the peaks or dips 

generated by RPs in IR spectra of oxide films or slabs [17, 24].  The rω  values are found near 

the frequencies of transverse optical (TO) or LO phonons [17, 24].  Since for RPs c
kx

>
ω

, it 

occurs that 0
2

→=
λ

π
xk , and that 

xrk  and 
xik  are small.  Thus, it can be assumed that the 

imaginary parts 
iω  and 

xik  satisfy c
k xi

i >
ω

 and txk ixi ω< .  Therefore, the term 
( )txk ixie

ω−−
 in Eq. 

(1) has a positive exponent which increases with t  and distance.  Due to the similarity in 

behavior predicted for other systems with imaginary frequency [33], we hypothesize that the 

portion of the polarization vector ( ) ( )txk ixietx
ω−−

∝,P  corresponds to radiation leaked at an angular 

frequency around 
iω  to the space surrounding the oxide layer where the RPs are excited by IR 
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radiation.  Since 
xk  is complex, the direction of propagation of the radiation leaked to the 

surrounding space is uncertain [17]. 

3. Experimental determination and characterization of the frequency 
iω  of the 

radiation emitted by radiative polaritons. 

To experimentally determine the frequency range of the iω  values, we examine the IR 

spectra versus the IR radiation angle of incidence 
0θ  [17] for the 0TH type-RP excited in thin 

oxide films, 250 nm thick or less, on metallic and semiconducting substrates.  For this work, thin 

planar amorphous Al2O3 films were deposited by atomic layer deposition (ALD) [34] as 

described in Ref. 23.  The γ-Al2O3 crystalline structure [35] was obtained by heat treatment for 

one hour at 600°C of the as-grown film.  The reflectance spectra of the Al2O3 film on Al foil and 

Si(100) were acquired in the middle IR (MIR) region (650-7500 cm
-1

) using a N2 purged Bruker 

Vertex 70 Fourier transform IR spectrometer (FTIR).  The broadband IR radiation is generated 

by a globar (Q301) source.  The samples were placed on the variable angle (30-80°) reflection 

accessory Veemax II by Pike Technologies, with a gold mirror on the back, in contact with the 

substrate.  In the reflectance spectra obtained with transverse magnetically polarized IR radiation 

for the 250 nm thick γ-Al2O3 films on Al foil and Si(100), the 0TH type-RP corresponds to the 

dip at rω  between 960 and 975 cm
-1

 [23, 36].  The polarization is achieved using a ZnSe 

polarizer.  The measurements were carried out with a 2 cm
-1

 resolution. 

Data collected for a 250 nm thick γ-Al2O3 film on Al foil [23] and Si(100) in the 30 to 

70° 
0θ  range indicate the increase of the experimental 

iω  values from approximately 30 to 48 

cm
-1

 for the 0TH type-RP.  Beyond 
0θ =70°, the uncertainty of the 

iω  values increases because 



7 

 

of the small percentage of IR beam cross section effectively exploited in the measurements at 

grazing angles.  In IR spectra, all oxides exhibit dips with similar widths [23-26, 36].  Generally, 

the 
iω  values in thin oxide films are found in the microwave to low FIR frequency range (10-

450 cm
-1

), and are only slightly substrate-dependent. 

To discern whether the 
iω  values depend on oxide film chemistry, the results for the 250 

nm thick γ-Al2O3 films are compared with same-thickness films of anatase (a)TiO2 on Al foil 

with rω  ≅ 850 cm
-1

 [37], and hexagonal (h)La2O3 on Si(100) with rω  = 546 cm
-1

 [38].  The a-

TiO2 film on Al exhibits an 
iω  of ∼ 40 cm

-1
 at 

0θ =75°, while the h-La2O3 film on Si(100) shows 

an 
iω  of ∼ 50 cm

-1
 at 

0θ =70°.  Thus, a slight dependence of 
iω  on oxide film chemistry exists.  

In addition, we observe a dependence on film thickness of the 
iω  values.  The data indicate that, 

at 
0θ =65°, the 

iω  values for 250 and 50 nm thick γ-Al2O3 films on Al foil are ∼ 37.5 and 34.0 

cm
-1

, respectively.  There exists an even larger difference for a-TiO2 films on Al foil.  A 50 nm 

thick film with rω  = 863 cm
-1

 exhibits an 
iω  value of 18.8 cm

-1
 at θ0=65°, which is 

approximately one half of the 
iω  for the 250 nm thick film.  Further evidence of the slight oxide 

film thickness dependence of 
iω  is offered by the 40 and 20 nm thick Lu2O3 films on Si(100) 

and CoSi [39] indicating at 
0θ =65° an 

iω  of ∼ 12 and 18 cm
-1

, respectively.  The slight oxide 

chemistry and thickness dependence suggest that the 
iω  values are correlated to the amount of 

RPs excited in the oxide film and to the atomic weight 
ma  of the metal ion in the oxide such that, 

approximately, mi a∝ω , as shown in Fig. 2 for 250 nm thick films.  This trend suggests that 

RPs behave differently than harmonic oscillators, and that their production resembles a “burst” 

that channels out energy.  Similar phenomena, such as electromagnetic emissions from strong 
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turbulences [40] or electron expulsion [41] accompany plasma waves when their phase velocities 

approach the relativistic regime. 

4. Detection of the radiation emitted by the 0TH type radiative polariton in La2O3 

films on silicon. 

The experimental detection of the radiation leaked to the surrounding space by the 

excitation of RPs is challenging, (1) because of the uncertainty of the direction of propagation of 

the radiation leaked to the surrounding space [17], and (2) because it is difficult to find an oxide 

such that its 0TH type-RP exhibits both the 
iω  and 

rω  frequencies in the FIR region, where they 

can be contemporarily detected.  Problem (1) is solved by performing the measurements keeping 

the detector in a fixed position, and varying the IR radiation incidence angle 
0θ  on the oxide film 

surface.  The expected signature of the radiation leaked to the surrounding space is a dip or a 

peak at the 
iω  frequency in the transmittance or reflectance spectra.  The dip or peak witness the 

fact that the radiation leaked to the surrounding space by the excitation of RPs is ruled neither by 

Snell’s law nor by the law of reflection.  Problem (2) is solved choosing La
+3

 as the metal ion, 

which is sufficiently heavy to generate oxides characterized by a prominent 0TH type-RP with 

the 
iω  and 

rω  frequencies in the FIR region.  Therefore, two 250 nm thick La2O3 films on 

Si(100) are selected for the investigation, one with hexagonal (h), and the other with cubic (c) 

phase.  The h-La2O3 film on Si(100) was grown by ALD, as described in Ref. 38, extracted from 

the reactor, and immediately annealed in vacuum at 600°C for 60 s.  The c-La2O3 film on Si(100) 

was similarly grown by ALD, but was capped with a layer of ALD Al2O3 about 5 nm thick 

before the extraction from the reactor [42].  Afterwards, the capped film was immediately 

annealed in vacuum at 600°C for 60 s.  Transmittance FTIR spectra were then collected for these 
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samples.  The schematic of the experimental set-up is shown in Fig. 3.  The transmittance FTIR 

spectra in Fig. 4(a) were measured in the FIR region using non-polarized IR radiation, as 

described in Ref. 38, in a 1 mbar sample compartment at 
0θ =0° and 70°.  The 

iω  values for the 

0TH type-RPs are ∼ 50 cm
-1

 at 
0θ =70° for both h- and c-La2O3 films on Si(100).  The spectra at 

0θ =70° for the 250 nm thick h- and c-La2O3 films on Si(100) exhibit a dip at 55.5 cm
-1

, clearly 

shown in Fig. 4(b).  The dip is slightly attenuated by the Al2O3 capping layer on c-La2O3.  The 

spectra at 
0θ =0° for the same films exhibit no dip.  Within the errors, the location of the dip in 

spectra collected at 
0θ =70° in Fig. 4(b) correlates with the 

iω  values for the examined films (∼ 

50 cm
-1

, as reported in Sec. 3).  Thus, we consider the dips in the transmittance FTIR spectra as 

the signature of the radiation leaked to the surrounding space following the excitation by IR 

radiation of the 0TH type-RP in the 250 nm thick h- and c-La2O3 films on Si(100).  The dip was 

simulated in Figs. 4(a) and (b) by adding to the expression of transmittance from Fresnel’s 

equations [43], a term proportional to 
i

i

ων

ω

−
− , where ν  is the real frequency on the abscissa of 

the IR spectra.  A detailed description of the simulation of the transmittance spectra and 

corresponding fine structures in the FIR region of the h-La2O3 films on Si(100) is given in the 

Supplementary Material [44]. 

5. Summary and significance. 

In summary, we have described a source of electromagnetic radiation which accompanies 

the formation of an object, e.g. a radiative polariton in a thin planar oxide film, characterized by 

the inability to propagate in the layer supporting its excitation.  Since radiative polaritons have 

long wavelength λ  and large frequency ω  such that their group velocity, ωλ=gv , is faster than 
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c , the speed of light in vacuum, upon excitation they dissipate their potential energy into 

radiation by acquiring a complex frequency.  Bursts of low frequency radiation originate from 

the dissipation process accompanying the excitation of radiative polaritons.  The imaginary part 

of the complex frequency of the radiative polaritons determines the magnitude of the frequency 

of the radiation given off. 

The presented results are relevant (i) for stimulating the search for radiation leaked to the 

surrounding space by radiative plasmons in metallic layers, which have similarities with the 

radiative polaritons, and (ii) for explaining the fine structures in infrared and, possibly, optical 

spectra.  This work could suggest the study of other similar potential sources of electromagnetic 

radiation in different physical scenarios, such as a beam of high frequency photons colliding with 

a beam of low frequency–large wavelength radio-waves, or a beam of high frequency photons in 

space colliding, for example, with gravitational waves with low frequency and large wavelength. 
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Figure Captions. 

Fig. 1.  Polariton dispersion relation showing the real angular frequency ω  versus the real wave-

vector 
xk  normalized with respect to the values for TO phonons [17].  The index x  indicates a 

direction parallel to the oxide layer surface.  The RPs and SPPs appear to the left- and right-hand 

side, respectively, of the light-line in vacuum c
k x

=
ω

 in the 
xk−ω  plane, [17].  As described in 

Ref. 17, RPs appear in regions labeled 1R , 2R , and '

1R , SPPs appear in regions labeled 1L , 2L , 

and '

1L , and no features exist in the regions labeled N.  The dielectric constants ( )0ε  and ( )infε  

are the values of ( )ωε  for zero and infinite frequency. 

Fig. 2.  Approximate dependence of iω  on the atomic weight 
ma  of the metal ion in the oxide 

such that ( )253.3 += mi aω  cm
-1

 evaluated for 250 nm thick oxide films.  The experimental 
iω  

values were measured with an uncertainty of ∼5 cm
-1

. 

Fig. 3.  Schematic of the experimental set-up for the IR transmittance measurements at an angle 

of incidence 
0θ  with respect to the normal n to the oxide film surface and the (x-y) plane.  The 

(x-y) plane is the plane of incidence of the IR radiation on the thin oxide film surface.  The 

incident and transmitted IR radiation is indicated by the wave-vectors kINC and kREFR, 

respectively.  The radiation leaked to the surrounding space following the excitation by IR 

radiation of the 0TH type-RP in a La2O3 film on a substrate is represented by the waves with 

wave-vector kS. 

Fig. 4.  (a) Experimental (ex.) and simulated (sim.) transmittance FTIR spectra measured at 
0θ

=0° and 70° in the FIR region using non-polarized IR radiation.  The experimental spectra were 
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obtained as described in Ref. 38 for 250 nm thick h-La2O3 and c-La2O3 films on Si(100).  The 

simulated spectra were obtained as described in the Supplementary Material [44] for a 250 nm 

thick h-La2O3 film on Si.  For clarity, the spectra are given an arbitrary offset.  (b) Zoom in the 

50-150 cm
-1

 range of the spectra in panel (a).  The symbol h- indicates the h-La2O3 film on 

Si(100), whereas c- indicates the c-La2O3 film on Si(100).  In panels (a) and (b) and in the 

spectra measured at 
0θ =70°, the arrow indicates the dip located at 55.5 cm

-1
 which correlates, 

within the errors, to the 
iω  values for the examined La2O3 films. 
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