50 research outputs found

    Fission of heavy Λ\Lambda hypernuclei with the Skyrme-Hartree-Fock approach

    Full text link
    Fission-related phenomena of heavy Λ\Lambda hypernuclei are discussed with the constraint Skyrme-Hartree-Fock+BCS (SHF+BCS) method, in which a similar Skyrme-type interaction is employed also for the interaction between a Λ\Lambda particle and a nucleon. Assuming that the Λ\Lambda particle adiabatically follows the fission motion, we discuss the fission barrier height of Λ239^{239}_{\Lambda}U. We find that the fission barrier height increases slightly when the Λ\Lambda particle occupies the lowest level. In this case, the Λ\Lambda particle is always attached to the heavier fission fragment. This indicates that one may produce heavy neutron-rich Λ\Lambda hypernuclei through fission, whose weak decay is helpful for the nuclear transmutation of long-lived fission products. We also discuss cases where the Λ\Lambda particle occupies a higher single-particle level.Comment: 20 pages, 18 figures, to be submitted to Nucl. Phys.

    Prospects for the discovery of the next new element: Influence of projectiles with Z > 20

    Full text link
    The possibility of forming new superheavy elements with projectiles having Z > 20 is discussed. Current research has focused on the fusion of 48Ca with actinides targets, but these reactions cannot be used for new element discoveries in the future due to a lack of available target material. The influence on reaction cross sections of projectiles with Z > 20 have been studied in so-called analog reactions, which utilize lanthanide targets carefully chosen to create compound nuclei with energetics similar to those found in superheavy element production. The reactions 48Ca, 45Sc, 50Ti, 54Cr + 159Tb, 162Dy have been studied at the Cyclotron Institute at Texas A&M University using the Momentum Achromat Recoil Spectrometer. The results of these experimental studies are discussed in terms of the influence of collective enhancements to level density for compound nuclei near closed shells, and the implications for the production of superheavy elements. We have observed no evidence to contradict theoretical predictions that the maximum cross section for the 249Cf(50Ti, 4n)295120 and 248Cm(54Cr, 4n)298120 reactions should be in the range of 10-100 fb.Comment: An invited talk given by Charles M. Folden III at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. Also contains information presented by Dmitriy A. Mayorov and Tyler A. Werke in separate contributions to the conference. This contribution will appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Mobility deficit – Rehabilitate, an opportunity for functionality

    Get PDF
    There are many pathological conditions that cause mobility deficits and that ultimately influence someone’s autonomy.Aims: to evaluate patients with mobility deficits functional status; to implement a Rehabilitation Nursing intervention plan; to monitor health gains through mobility deficits rehabilitation.Conclusion: Early intervention and the implementation of a nursing rehabilitation intervention plan results in health gains (direct or indirect), decreases the risk of developing Pressure Ulcers (PU) and the risk of developing a situation of immobility that affects patients’ autonomy and quality of life

    Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction 209^{209}Bi+70^{70}Zn

    Full text link
    We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction 70^{70}Zn + 209^{209}Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction 70^{70}Zn + 209^{209}Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4% and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. {\bf 73} (2004) 2593].Comment: 6 pages, 4 figure

    Gas chemical investigation of hafnium and zirconium complexes with hexafluoroacetylacetone using preseparated short-lived radioisotopes

    Get PDF
    Volatile metal complexes of the group 4 elements Zr and Hf with hexafluoroacetylacetonate (hfa) have been studied using short-lived radioisotopes of the metals. The new technique of physical preseparation has been employed where reaction products from heavy-ion induced fusion reactions are isolated in a physical recoil separator - the Berkeley Gas-filled Separator in our work - and made available for chemistry experiments. Formation and decomposition of M(hfa)4 (M=Zr, Hf) has been observed and the interaction strength with a fluorinated ethylene propylene (FEP) Teflon surface has been studied. From the results of isothermal chromatography experiments, an adsorption enthalpy of -ΔHa=(57±3)kJ/mol was deduced. In optimization experiments, the time for formation of the complex and its transport to a counting setup installed outside of the irradiation cave was minimized and values of roughly one minute have been reached. The half-life of 165Hf, for which conflicting values appear in the literature, was measured to be (73.9±0.8)s. Provided that samples suitable for α-spectroscopy can be prepared, the investigation of rutherfordium (Rf), the transactinide member of group 4, appears possible. In the future, based on the studies presented here, it appears possible to investigate short-lived single atoms produced with low rates ( e.g. , transactinide isotopes) in completely new chemical systems, e.g. , as metal complexes with organic ligands as used here or as organometallic compound

    Particle-hole excited states in 133 Te

    Get PDF
    Excited states in neutron-rich 133Te{}^{133}\mathrm{Te} have been identified with the Gamma sphere array by measuring three- and higher-fold prompt coincidence events following spontaneous fission of 252Cf.{}^{252}\mathrm{Cf}. Four types of particle-hole bands built on the known 334.3 keV isomer in 133Te{}^{133}\mathrm{Te} are identified. The yrast and near yrast particle-hole states observed up to 6.2 MeV in 133Te{}^{133}\mathrm{Te} have characteristics quite similar to those in 134Te.{}^{134}\mathrm{Te}. These states are interpreted as a result of coupling a neutron \ensuremath{\nu}{h}_{11/2} hole to the 134Te{}^{134}\mathrm{Te} core. The group of states observed above 5.214 MeV is the result of a neutron particle-hole excitation of the double magic core nucleus 132Sn,{}^{132}\mathrm{Sn}, and is a candidate for a tilted rotor band. Shell-model calculations considering 132Sn{}^{132}\mathrm{Sn} as a closed core have been performed and have provided guidance to the interpretation of the levels below 4.3 MeV. Very good agreement between theory and experiment is obtained for these states
    corecore