253 research outputs found

    Advanced Vadose Zone Simulations Using TOUGH

    Full text link
    The vadose zone can be characterized as a complex subsurface system in which intricate physical and biogeochemical processes occur in response to a variety of natural forcings and human activities. This makes it difficult to describe, understand, and predict the behavior of this specific subsurface system. The TOUGH nonisothermal multiphase flow simulators are well-suited to perform advanced vadose zone studies. The conceptual models underlying the TOUGH simulators are capable of representing features specific to the vadose zone, and of addressing a variety of coupled phenomena. Moreover, the simulators are integrated into software tools that enable advanced data analysis, optimization, and system-level modeling. We discuss fundamental and computational challenges in simulating vadose zone processes, review recent advances in modeling such systems, and demonstrate some capabilities of the TOUGH suite of codes using illustrative examples

    P-mode leakage and Lyman-α intensity

    Get PDF
    We present an observational test of the hypothesis that leaking p modes heat the solar chromosphere. The amplitude of the leaking p modes in magneto-acoustic portals is determined using MOTH and MDI data. We simulate the propagation of these modes into the chromosphere to determine the height where the wave energy is dissipated by shock waves. A statistical approach is then used to check if this heating process could account for the observed variability of the intensity in the Lyman-α emissio
    • …
    corecore