ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY # ITOUGH2 V3.2 Verification and Validation Report RECEIVED SEP 0 9 1938 OSTI Stefan Finsterle **Earth Sciences Division** June 1998 MASTER DISTRIBUTION OF THIS DOCUMENT IS LAKENTED #### DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the University of California. This report has been reproduced directly from the best available copy. Available to DOE and DOE Contractors from the Office of Scientific and Technical Information P.O. Box 62, Oak Ridge, TN 37831 Prices available from (615) 576-8401 Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, VA 22161 Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity employer. ### **DISCLAIMER** Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. ## ITOUGH2 V3.2 ## Verification and Validation Report Stefan Finsterle Lawrence Berkeley National Laboratory Earth Sciences Division University of California Berkeley, CA 94720 June, 1998 This work was supported, in part, by the Director, Office of Civilian Radioactive Waste Management, U.S. Department of Energy, through Memorandum Purchase Order EA9013MC5X between TRW Environmental Safety Systems, Inc. and the Ernest Orlando Lawrence Berkeley National Laboratory, under contract No. DE-AC03-76SF00098. ## **Table of Contents** | 1. | Intro | oduction | 1 | |-----|-------|---|-----| | 2. | Test | t Results | 2 2 | | | 2.1 | Fracture-Matrix Interface Area Reduction | 2 | | | | 2.1.1 Interface Area Reduce by a Constant | 5 | | | | 2.1.2 Interface Area Reduce by Upstream Saturation | 6 | | | | 2.1.3 Interface Area Reduce by Upstream Saturation Times a Constant | 8 | | | | 2.1.4 Interface Area Reduce by Upstream Relative Permeability2.1.5 Interface Area Reduce by Upstream Relative Permeability Times | 10 | | | | a Constant | 12 | | | | Free Drainage Boundary Condition | 14 | | | 2.3 | Active Fracture Concept | 16 | | | 2.4 | 1 J | 21 | | | | 2.4.1 Modification to Brooks-Corey Capillary Pressure Function | 21 | | | | 2.4.2 Modification to van Genuchten Capillary Pressure Function | 23 | | | | J 1 | 25 | | | | | 32 | | | 2.7 | | 33 | | | | | 38 | | | 2.9 | Regression Testing | 44 | | 3. | Sun | nmary | 46 | | Ac | know | /ledgment | 47 | | Ref | eren | ces | 47 | | Ap | pend | ix A: List of files | 48 | | Αp | pend | ix B: File read.me | 51 | #### 1. Introduction This report describes the Verification and Validation (V & V) test cases performed to qualify ITOUGH2 V3.2 in compliance with YMP-LBNL-QIP-SI.0, Rev. 3, Mod. 0. The testing of the software follows the V & V Plan as outlined in SCMS Form 3, Point 1, and addresses the functional requirements given in SCMS Form 2, Point 4. The qualification of software related to ITOUGH2 is described in *Pruess et al.* [1996], Wu et al. [1996], and Finsterle et al. [1996]. The requirements are reproduced in Table 1.1. Additional information can be found in the user's manual [Finsterle, 1998]. Table 1.1. List of Requirements | # | Requirement | Section | |-----|---|---------| | - | Fracture-matrix interface area reduced by: | | | 1.1 | A constant | 2.1.1 | | 1.2 | Upstream saturation | 2.1.2 | | 1.3 | Upstream saturation times a constant | 2.1.3 | | 1.4 | Upstream relative permeability | 2.1.4 | | 1.5 | Upstream relative permeability times a factor | 2.1.5 | | 2 3 | Free drainage boundary condition | 2.2 | | 3 | Active Fracture Concept | 2.3 | | 4.1 | Modification of Brooks-Corey capillary pressure function | 2.4.1 | | 4.2 | Modification of van Genuchten capillary pressure function | 2.4.2 | | . 5 | New observation types SECONDARY and HEAT FLOW | 2.5 | | 6 | New priorities in porosity definition | 2.6 | | 7 | Adjusting array dimensions | 2.7 | | 8 | Application control | 2.8 | | 9 | Regression testing | 2.9 | ITOUGH2 V3.2 was installed in a directory ~/itough2v3.2 on a SUN ULTRA 1 workstation under UNIX Solaris 2. Instructions for installing ITOUGH2 can be found in file *read.me* and the user's manual. This report is structured as follows: For each functional requirement, the corresponding design is described, which may include the mathematical model implemented in ITOUGH2 V3.2, if appropriate. Next, we discuss the test case or sequence of test cases performed to validate each requirement, followed by a description of the test results and their compliance with the acceptance criteria given in SCMS Form 3, Point 1. #### 2. Test Results #### 2.1 Fracture-Matrix Interface Area Reduction There is evidence that fracture-matrix interaction in the unsaturated zone is reduced as a result of fracture coatings as well as preferential flow in the fractures as induced by flow instabilities (fingering) and small-scale heterogeneities. A number of options for reducing fracture-matrix interface area have been implemented for use in a dual-permeability flow simulation. Interface area reduction is applied to connections with a negative value for variable ISOT, which is provided in the CONNE block [*Pruess*, 1987]. Different modifiers are used depending on the value of ISOT and MOP(8) as summarized in Table 2.1.1. Table 2.1.1. Option for Reducing Fracture-Matrix Interface Area | ISOT | MOP(8) | Interface area reduction factor a_{fm} | | | | | | | |-------------------------------|---------------------------------|---|--|--|--|--|--|--| | 1, 2, 3 | any | No interface area reduction, i.e., $a_{fm} = 1$ | | | | | | | | negative | 1 | $a_{fm} = RP(6, NMAT)$ | | | | | | | | -1, -2, -3 | 0 | $a_{fm} = S_{\beta}$ | | | | | | | | | 2 | $a_{fm} = S_{\beta} \cdot RP(7, NMAT)$ | | | | | | | | -4, -5, -6 | 0 | $a_{fm} = k_{r\beta}$ | | | | | | | | | 2 | $a_{fm} = k_{r\beta} \cdot RP(7, NMAT)$ | | | | | | | | -10, -11, -12 | 0 | $a_{fm} = S_e^{1+\gamma}$ (see Section 2.3) | | | | | | | | a_{fm} | : Fracture-matrix interface as | rea reduction factor. | | | | | | | | $a_{fm} \ S_{oldsymbol{eta}}$ | : For flow of phase β, upstro | eam saturation of phase β. | | | | | | | | $k_{r\beta}$ | : For flow of phase β, upstro | eam relative permeability of phase β . | | | | | | | | $RP(6, NMAT)^{\#}$ | : 6th parameter of rel. perm | 6th parameter of rel. perm. function of upstream element. | | | | | | | | $RP(7, NMAT)^{\#}$ | : 7th parameter of rel. perm | 7th parameter of rel. perm. function of upstream element. | | | | | | | | # | : If zero (i.e., not specified) | , reset to one. | | | | | | | Figure 2.1.1 shows the pseudo-code implemented for the interface area reduction calculation, revealing the control logic. ``` afm:=1 if ISO negative then determine material number NMAT of upstream gridblock if ISO=-1, -2, or -3 then afm:=upstream saturation else if ISO=-4, -5, or -6 then afm:=upstream relative permeability else if ISO=-10, -11, or -12 then afm:=Equation (2.3.6) end if if MOP(8)=1 then afm:=RP(6,NMAT) else if MOP(8)=2 then afm=afm*RP(7,NMAT) end if end if area:=area*afm ``` Figure 2.1.1. Pseudo-code for interface area reduction. To validate whether the interface area available for fluid flow between two adjacent gridblocks is reduced from its geometric value by the corresponding factor described in Table 2.1.1, a one-dimensional, dual-permeability fracture-matrix model was developed with constant infiltration at the top and constant pressure and saturation at the bottom. The generic TOUGH2 input file is shown in Figure 2.1.2. The model has two layers, each layer with its own set of fracture and matrix properties. Note that the first four entries in block CONNE represent the connections between the fracture and matrix gridblocks, which will be subjected to interface area reduction. The different options are implemented by changing MOP(8), ISO, and AREA as described in the following sections. Because of successful regression testing (see Section 2.9), the Run B simulations described below can be performed using either standard TOUGH2 or ITOUGH2 in forward mode. | | | rix Interfa | | | | | | | |--|---|---------------------------------------|--|--
---|------------------------|--|---| | ROCKS
FRAC1 | 2 | 2000.0 | 0.10 | 1.0E-12 | 1.0E-12 | 1.0E-12 | 2.0 | 900.0 | | 7
7 | | 0.5000
0.5000 | 0.0100 | 1.0000
1.000E-04 | | 1.000 | 0.01 | 0.1 | | MATR1 | 2 | 2000.0 | 0.10 | 1.0E-17
0.2500 | 1.0E-17 | 1.0E-17 | 2.0 | 900.0 | | 7
7 | | 0.2500
0.2500 | 0.1000 | 1.0000
1.000E-05 | | 1.000 | 0.01 | 0.1 | | FRAC2 | 2 | 2000.0 | 0.10
1.7300 | 1.0E-12
0.2500 | 1.0E-12 | 1.0E-12 | 2.0 | 900.0 | | 7
7 | | 0.5000
0.5000 | | 1.0000
1.000E-03 | | 1.000 | 0.01 | 0.1 | | MATR2
7 | 2 | 2000.0 | 0.10
1.7300 | 1.0E-16
0.2500 | 1.0E-16 | 1.0E-16 | 2.0
0.01 | 900.0
0.1 | | 7 | | 0.2000
0.2000 | 0.1500
0.1500 | 1.0000
1.000E-06 | | 1.000 | | | | START
PARAM | 1 | | *3
789012345 | | *5 | *6 | *7 | *8 | | -3999
1.000E- | | 999900000 | | | | 9.81 | | | | | | 0.8 | | | | | | | | F 1 1 1 2 2 3 4 4 5 5 | 1
1
2
3
4
2
3
4
5
2
3
4
5
2
3
4
5 | 10.
20.
30.
40.
30.
4- | 1000E-010
1000E+010
1000E+010
1000E+010
1000E+010
1000E+010
1000E+010
1000E+010
*31
-1:
-1:
-1:
-1:
3
3
3
3
3
3
3 | .1000E-01
.1000E+01
.0000E+00
.0000E+00
.0000E+00
.0000E+00
.1000E-01
.1000E-01
.1000E+01
.0000E+00
.0000E+00
.0000E+00
0.0000E+00
0.0000E+00
0.5000E+00
0.5000E+00
0.5000E+00
0.5000E+00
0.5000E+00
0.5000E+00 | *5-
0.5000E+000
0.5000E+000
0.5000E+000
0.5000E+000
0.5000E+000
0.5000E+000
0.5000E+000
0.5000E+000 | .1000E+01
.1000E+01 | 1000E+01
1000E+01
1000E+01
1000E+01
1000E+01
1000E+01
1000E+01
1000E+01 | .5000E+00
.5000E+00
.1500E+01
.1500E+01
.2500E+01
.3500E+01
.3500E+01
.4500E+01
.4500E+01 | | F 1
INCON
M 5
0.99
F 5
0.02 | 1 | *2 | *3- | | L.0000E-07 | *6 | *7- | *8 | | ENDCY | 1 | *2 | *3- | <u>*-</u> 4- | *5- | *6 | *7- | *8 | Figure 2.1.2. Generic TOUGH2 input file for validating fracture-matrix interface area reduction. #### 2.1.1 Interface Area Reduced by a Constant To confirm that the interface area available for fluid flow between two adjacent gridblocks is reduced from its geometric value by the constant provided through TOUGH2 input variable RP(6,NMAT), the following two runs were performed: - Run A: Steady-state simulation with geometric interface area, using negative values for ISOT, setting MOP(8)=1, and setting RP(6,NMAT)=0.01 for all rock types. The input file is named vvFM1A; it is shown in Figure 2.1.2. - Run B: Steady-state simulation with interface areas reduced to 1% of their geometric values and positive ISOT. The input file is named *vvFM1B*; the CONNE block is reproduced in Figure 2.1.1.1. Because of limited accuracy in specifying interface areas in the TOUGH2 input file, there may be slight differences in the two results. However, for the values chosen here, both runs should yield identical results. The following command lines were used to run the test cases: ``` itough2 -v3.2 vvFM1A 9 & itough2 -v3.2 vvFM1B 9 & ``` Inspection of the two output files vvFM1A.out and vvFM1B.out confirms that identical results were obtained, fulfilling Requirement 1.1. ``` CONNE----1----*---2----*---3----*---4----*---5----*---6----*---7----*----8 10.0000E+000.5000E+000.1000E-01 23 FFFMMMMFFFF 10.0000E+000.5000E+000.1000E-01 3M 10.0000E+000.5000E+000.1000E-01 4M 10.0000E+000.5000E+000.1000E-01 1M 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E+010.1000E+01 4 M 30.5000E+000.5000E+000.1000E+010.1000E+01 1F 30.5000E+000.5000E+000.1000E-010.1000E+01 2F 30.5000E+000.5000E+000.1000E-010.1000E+01 3F 30.5000E+000.5000E+000.1000E-010.1000E+01 30.5000E+000.5000E+000.1000E-010.1000E+01 ``` **Figure 2.1.1.1.** Block CONNE of file vvFM1B, showing positive values for variable ISOT and interface areas reduced to 1% of the values shown in Figure 2.1.2. #### 2.1.2 Interface Area Reduced by Upstream Saturation To confirm that the interface area available for fluid flow between two adjacent gridblocks is reduced from its geometric value by the saturation of the upstream gridblock, the following two runs were performed: - Run A: Steady-state simulation with geometric interface area, setting ISOT=-1, and MOP(8)=0. The input file is named vvFM2A; it is identical to the file shown in Figure 2.1.2, with the exception of MOP(8). - Run B: Steady-state simulation with interface areas specified directly in block CONNE, reduced by the steady-state upstream saturation calculated in Run A. The input file is named *vvFM2B*. The results of the two runs are expected to be slightly different because (1) there is limited accuracy in specifying interface areas in the TOUGH2 input file, and (2) while the interface area available for flow changes with saturation (and thus with time) in Run A, the reduced value is fixed throughout Run B. This difference leads to a different system development as it evolves from its initial state towards steady-state conditions, with different time steps taken, different total simulation times to reach steady state, and different number of iterations, leading to different round-off and time-discretization errors. Nevertheless, the results at steady-state are expected to be very similar, with the maximum difference in any output variable being less than 0.1%. The following command line was used for Run A: itough2 -v3.2 vvFM2A 9 & The saturations as written to the SAVE file vvFM2A.sav (see Figure 2.1.2.1) are used as reduction factors of the interface areas of the first four connections specified in the CONNE block of file vvFM2B as shown in Figure 2.1.2.2. At steady state, flow is from the fractures into the matrix, making the fracture gridblocks the upstream gridblocks. ``` INCON -- INITIAL CONDITIONS FOR 10 ELEMENTS AT TIME 0.10000000E+00 0.4338920874502E+00 0.000000000000E+00 0.1000000E+00 0.8921064332228E+00 0.000000000000E+00 0.10000000E+00 0.6098054293383E+00 0.000000000000E+00 0.10000000E+00 0.8960659745952E+00 0.000000000000E+00 0.10000000E+00 0.2750228155389E+00 0.000000000000E+00 0.10000000E+00 0.9881525567958E+00 0.000000000000E+00 0.1000000E+00 0.1754130794552E+00 0.00000000000000E+00 4 0.10000000E+00 0.9890779950707E+00 0.000000000000E+00 0.10000000E+00 0.20000000000E-01 0.00000000000E+00 0.10000000E+00 0.990000000000E+00 0.000000000000E+00 4 0.10000000E-04 0.42949673E+16 ``` Figure 2.1.2.1. File vvFM2A.sav, showing steady-state saturations obtained in Run A. | CON | NE | 1 | *2**8 | |-----|----|---|---| | F | 1M | 1 | 10.0000E+000.5000E+000.43389087 | | F | 2M | 2 | 10.0000E+000.5000E+000.60980543 | | F | 3M | 3 | 10.0000E+000.5000E+000.27502282 | | F | 4M | 4 | 10.0000E+000.5000E+000.17541308 | | M | 1M | 2 | 30.5000E+000.5000E+000.1000E+010.1000E+01 | | M | 2M | 3 | 30.5000E+000.5000E+000.1000E+010.1000E+01 | | Μī | 3M | 4 | 30.5000E+000.5000E+000.1000E+010.1000E+01 | | M | 4M | 5 | 30.5000E+000.5000E+000.1000E+010.1000E+01 | | F | 1F | 2 | 30.5000E+000.5000E+000.1000E-010.1000E+01 | | F | 2F | 3 | 30.5000E+000.5000E+000.1000E-010.1000E+01 | | F | 3F | 4 | 30.5000E+000.5000E+000.1000E-010.1000E+01 | | F | 4F | 5 | 30.5000E+000.5000E+000.1000E-010.1000E+01 | Figure 2.1.2.2. Block CONNE of file vvFM2B, showing interface areas reduced by the fracture saturations shown in Figure 2.1.2.1. The following command line was used for Run B: ``` itough2 -v3.2 vvFM2B 9 & ``` Inspection of the two output files vvFM2A.out and vvFM2B.out confirms that identical results were obtained, fulfilling Requirement 1.2. #### 2.1.3 Interface Area Reduced by Upstream Saturation Times a Constant To confirm that the interface area available for fluid flow between two adjacent gridblocks is reduced from its geometric value by the saturation of the upstream gridblock times the factor provided through variable RP(7,NMAT), the following two runs were performed: - Run A: Steady-state simulation with geometric interface area, setting ISOT=-1, and MOP(8)=2, and RP(7,NMAT)=0.1 for all rock types. The input file is named *vvFM3A*; it is identical to the file shown in Figure 2.1.2, with the exception of MOP(8). - Run B: Steady-state simulation with interface areas specified directly in block CONNE, reduced by the steady-state upstream saturation calculated in Run A times 0.1. The input file is named *vvFM3B*. The results at steady-state are expected to be very similar, with the maximum difference in any output variable being less than 0.1%. The following command line was used for Run A: itough2 -v3.2 vvFM3A 9 & The saturations as written to the SAVE file vvFM3A.sav (see Figure 2.1.3.1) are used as reduction factors of the interface areas specified for the first four connections in the CONNE block of file vvFM3B as shown in Figure 2.1.3.2. The interface areas are further reduced by 0.1, which is the factor specified in RP(7,NMAT) of Run A. At steady state, flow is from the fractures into the matrix, making the fracture gridblocks the upstream gridblocks. ``` INITIAL CONDITIONS FOR 10 ELEMENTS AT TIME 0.429497E+16 0.10000000E+00 0.4376531245338E+00 0.000000000000E+00 0.10000000E+00 0.8357579578799E+00 0.00000000000000E+00 2 0.10000000E+00 0.6175860651419E+00 0.00000000000000E+00 2 0.10000000E+00 0.8436032656234E+00 0.00000000000000E+00 3 0.1000000E+00 0.2911632608216E+00 0.00000000000000E+00 3 0.1000000E+00 0.9878238253713E+00 0.000000000000000E+00 4 0.10000000E+00 0.1852263062714E+00 0.000000000000E+00 0.1000000E+00 0.9889180282040E+00 0.00000000000000E+00 5 0.1000000E+00
0.2000000000000E-01 0.0000000000000E+00 5 0.1000000E+00 0.99000000000E+00 0.00000000000E+00 4 0.10000000E-04 0.42949673E+16 ``` Figure 2.1.3.1. File vvFM3A.sav, showing steady-state saturations obtained in Run A. ``` CONNE----1----*---2----*---3----*---4----*---5----*---6----*---7----*---8 10.0000E+000.5000E+000.04376531 10.0000E+000.5000E+000.06175871 10.0000E+000.5000E+000.02911633 FFFMMMMFFF 2M 3M 4M 10.0000E+000.5000E+000.01852263 30.5000E+000.5000E+000.1000E+010.1000E+01 1M 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E+010.1000E+01 2M 3M 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E-010.1000E+01 4M 1 F 30.5000E+000.5000E+000.1000E-010.1000E+01 2F 30.5000E+000.5000E+000.1000E-010.1000E+01 3F 4F 30.5000E+000.5000E+000.1000E-010.1000E+01 ``` Figure 2.1.3.2. Block CONNE of file vvFM3B, showing interface areas reduced by 10% of the fracture saturations shown in Figure 2.1.3.1. The following command line was used for Run B: ``` itough2 -v3.2 vvFM3B 9 & ``` Inspection of the two output files vvFM3A.out and vvFM3B.out confirms that identical results were obtained, fulfilling Requirement 1.3. #### 2.1.4 Interface Area Reduced by Upstream Relative Permeability To confirm that the interface area available for fluid flow between two adjacent gridblocks is reduced from its geometric value by the relative permeability of the upstream gridblock, the following two runs were performed: - Run A: Steady-state simulation with geometric interface area, setting ISOT=-4, and MOP(8)=0. The input file is named *vvFM4A*; it is identical to the file shown in Figure 2.1.2, with the exception of MOP(8) and ISOT for the first four connections. - Run B: Steady-state simulation with interface areas specified directly in block CONNE, reduced by the steady-state upstream relative permeability calculated in Run A. The input file is named *vvFM4B*. The results at steady-state are expected to be very similar, with the maximum difference in any output variable being less than 0.1%. The following command line was used for Run A: itough2 -v3.2 vvFM4A 9 & The liquid relative permeabilities as written to the TOUGH2 output file *vvFM4A.out* (see Figure 2.1.4.1) are used as reduction factors of the interface areas of the first four connections specified in the CONNE block of file *vvFM4B* as shown in Figure 2.1.4.2. At steady state, flow is from the fractures into the matrix, making the fracture gridblocks the upstream gridblocks. ``` Case 4: Fracture-Matrix Interface Area Reduction: upstream rel. perm. 36 - ITER = 1 - TIME = 0.42950E+16 ELEM. INDEX DX1 K(LIQ.) 1 0.43804E+00 0.00000E+00 0.63542E-02 2 0.82310E+00 0.00000E+00 0.14249E-01 3 0.61830E+00 0.00000E+00 4 0.83338E+00 0.00000E+00 0.16522E-01 5 0.29271E+00 0.00000E+00 0.92665E-03 6 0.98779E+00 0.00000E+00 0.16919E+00 0.18617E+00 0.00000E+00 0.10746E-03 0.98890E+00 0.00000E+00 0.17829E+00 0.20000E-01 0.00000E+00 0.26158E-09 10 0.99000E+00 0.00000E+00 0.18831E+00 ``` Figure 2.1.4.1. Excerpt from file vvFM4A.out, showing steady-state liquid relative permeabilities obtained in Run A. ``` CONNE---1---*---2---*--3----*---5---*---6---*---7---*---8 10.0000E+000.5000E+000.63542E-2 FFFMMMMFFF 2M 10.0000E+000.5000E+000.34911E-1 3M 10.0000E+000.5000E+000.92665E-3 4M 10.0000E+000.5000E+000.10746E-3 1M 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E-010.1000E+01 30.5000E+000.5000E+000.1000E-010.1000E+01 30.5000E+000.5000E+000.1000E-010.1000E+01 30.5000E+000.5000E+000.1000E-010.1000E+01 ``` Figure 2.1.4.2. Block CONNE of file vvFM4B, showing interface areas reduced by the fracture relative permeabilities shown in Figure 2.1.4.1. The following command line was used for Run B: ``` itough2 -v3.2 vvFM4B 9 & ``` Inspection of the two output files vvFM4A.out and vvFM4B.out confirms that identical results were obtained, fulfilling Requirement 1.4. ## 2.1.5 Interface Area Reduced by Upstream Relative Permeability Times a Constant To confirm that the interface area available for fluid flow between two adjacent gridblocks is reduced from its geometric value by the relative permeability of the upstream gridblock times the factor provided through variable RP(7,NMAT), the following two runs were performed: - Run A: Steady-state simulation with geometric interface area, setting ISOT=-4, MOP(8)=2, and RP(7,NMAT)=0.1 for all rock types. The input file is named *vvFM5A*; it is identical to the file shown in Figure 2.1.2, with the exception of MOP(8) and ISOT for the first four connections. - Run B: Steady-state simulation with interface areas specified directly in block CONNE, reduced by 10% of the steady-state upstream liquid saturation calculated in Run A. The input file is named *vvFM5B*. The results at steady-state are expected to be very similar, with the maximum difference in any output variable being less than 0.1%. The following command line was used for Run A: itough2 -v3.2 vvFM5A 9 & The liquid relative permeabilities as written to the TOUGH2 output file *vvFM5A.out* (see Figure 2.1.5.1) are used as reduction factors of the interface area specified in the CONNE block of file *vvFM5B* as shown in Figure 2.1.5.2. The interface areas are further reduced by 0.1, the factor specified in variable RP(7,NMAT) in Run A. At steady state, flow is from the fractures into the matrix, making the fracture gridblocks the upstream gridblocks. ``` Case 5: Fracture-Matrix Interface Area Reduction: upstream rel. perm.*factor KCYC = TIME = 0.53687E+16 35 - ITER = ELEM. INDEX X1 DX1 K(LIQ.) 1 0.43834E+00 0.00000E+00 0.63752E-02 2 0.80758E+00 0.00000E+00 0.11399E-01 M F M 3 0.61896E+00 0.00000E+00 0.35104E-01 4 0.81769E+00 0.00000E+00 0.13182E-01 F M 5 0.29408E+00 0.00000E+00 0.94738E-03 6 0.98776E+00 0.00000E+00 0.16894E+00 7 0.18700E+00 0.00000E+00 0.10976E-03 M 8 0.98889E+00 0.00000E+00 0.17815E+00 F 9 0.20000E-01 0.00000E+00 0.26158E-09 10 0.99000E+00 0.00000E+00 0.18831E+00 ``` **Figure 2.1.5.1.** Excerpt from file *vvFM5A.out*, showing steady-state liquid relative permeabilities obtained in Run A. ``` ---*---2----*---3----*---4----*---5----*---6----*---7----*---8 10.0000E+000.5000E+000.63752E-3 10.0000E+000.5000E+000.35104E-2 10.0000E+000.5000E+000.94738E-4 2M 3M F M M M M F 4M 10.0000E+000.5000E+000.10976E-4 1M 2M 3M 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E+010.1000E+01 30.5000E+000.5000E+000.1000E-010.1000E+01 4M 1F 30.5000E+000.5000E+000.1000E-010.1000E+01 30.5000E+000.5000E+000.1000E-010.1000E+01 2F 3 F 30.5000E+000.5000E+000.1000E-010.1000E+01 ``` **Figure 2.1.5.2.** Block CONNE of file vvFM5B, showing interface areas reduced by 10% of the fracture liquid relative permeabilities shown in Figure 2.1.5.1. The following command line was used for Run B: ``` itough2 -v3.2 vvFM5B 9 & ``` Inspection of the two output files *vvFM5A.out* and *vvFM5B.out* confirms that identical results were obtained, fulfilling Requirement 1.5. #### 2.2 Free Drainage Boundary Condition A free drainage boundary condition for liquid flow is implemented, in which gravity is the only driving force, i.e., (capillary) pressure gradients are ignored across the interface to a boundary gridblock. This type of boundary condition comes into effect at each connection, in which one of the gridblocks belongs to rock type DRAIN. To test whether the free drainage boundary condition is correctly implemented, onedimensional, gravity-driven, unsaturated flow is calculated with a free drainage boundary condition at the bottom of the column. If the resulting steady-state saturation profile is uniform and not affected by the capillary pressure gradient to the boundary gridblock, the implementation is considered correct. The TOUGH2 input file is shown in Figure 2.2.1. Note that the last element is inactive (negative volume) and associated with rock type DRAIN. The following command line was used for Run B: itough2 -v3.2 vvFDBC 9 & The steady-state solution (TOUGH2 output file *vvFDBC.out*) is shown in Figure 2.2.2. Note that the boundary gridblock would act as a capillary barrier, leading to a saturation buildup and thus nonuniform saturation profile. However, as a result of the newly implemented free drainage boundary condition, the saturation profile is uniform, fulfilling Requirement 2. | | | | boundary | | | + 5 | *6 | * 7 | +O | |-----------|----------|--------|----------------------|--------------------------|---------------------|-------------------|----------------------------|---------------------------------------|----------------------| | FRAC | | 2 | 2000.0 | | | 1.0E-12 | | 2.0 | 900.0 | | | 7 | | 0.5000 | | 1.0000 | | 1 000 | 0.01 | 0.1 | | DRA: | 7
EN | 2 | 0.5000
2000.0 | 0.0100 | 1.0E-04
1.0E-12 | 1.0E-12 | 1.000
1.0E-12 | 2.0 | 900.0 | | | 7
7 | | 0.5000
0.5000 | | 1.0000
L.000E-04 | | 1.000 | 0.01 | 0.1 | | PARA | M | 9 | 123456
9999000000 | 789012345 | 678901234 | *5- | 9.81 | *7 | *8 | | MUL | | 1 | | *3 | *4- | *5- | *6 | *7 | *8 | | | | 1 | | | | *5- | *6 | | | | F | 1
2 | | | 1000E+000.
1000E+000. | | | | | 5000E+01
1500E+02 | | F | 3 | | | 1000E+000 | | | | - | 2500E+02 | | F | 4 | | | 1000E+000 | | | | | 3500E+02 | | F | 5 | | 2 | 1000E+000 | 1000E-01 | | | | 4500E+02 | | CONI | VE | 1 | *2 | *3 | *4- | *5- | *6 | *7 | *8 | | F | 1F | 2 | | | | | 0.1000E-010 | | | | F | 2F | 3 | | | | | 0.1000E-010 | | | | ਬ
ਬ | 3F
4F | 4
5 | | | | | 0.1000E-010
0.1000E-010 | | | | r r | 44 | 3 | | 3 | 0.5000E+01 | .0.3000E+010 | 0.1000E-010 | .10005+01 | | | GENI
F | | 1 | *2 | *3 | | *5-
1.0000E-07 | *6 | *7 | *8 | | ENDO | CY | 1 | *2 | *3 | *4- | *5- | *6 | *7 | *8 | | 130 | | A A 4 | TOT TOT | <u> </u> | | | | , , , , , , , , , , , , , , , , , , , | | **Figure 2.2.1.** TOUGH2 input file *vvFDBC* for
free drainage boundary problem. #### 2.3 Active Fracture Concept There is evidence that only a portion of the connected fracture network conducts water under unsaturated conditions. The fractures contributing to liquid flow are referred to as "active fractures". The Active Fracture Concept (AFC) was developed by Liu et al. [1998] to describe gravity-dominated, non-equilibrium, preferential liquid flow in fractures, which is expected to be similar to fingering in unsaturated porous media. AFC is based on the hypothesis that (1) the number of active fractures is small compared with the total number of connected fractures, (2) the number of active fractures within a gridblock is large so that the continuum approach is valid, and (3) the fraction of active fractures, f_a , is related to water flux and equals one for a fully saturated system, and zero if the system is at residual saturation. The following power function of effective liquid saturation, S_e , fulfills these conditions: $$f_a = S_e^{\gamma} \tag{2.3.1}$$ Here, γ is a positive constant depending on properties of the fracture network, and S_e is the effective liquid saturation given by $$S_e = \frac{S_l - S_{lr}}{1 - S_{lr}} \tag{2.3.2}$$ Capillary pressure and relative permeability functions are modified to account for the fact that the effective saturation in the active fractures, S_{ea} , is larger than the effective saturation of the total fracture continuum: $$S_{ea} = \frac{S_e}{f_a} = S_e^{1-\gamma}$$ (2.3.3) Using the van Genuchten model, capillary pressure and liquid relative permeability are given, respectively, by $$p_c = -\frac{1}{\alpha} \left[S_e^{(\gamma - 1)/m} - 1 \right]^{1/n}$$ (2.3.4) and $$k_{rl} = S_e^{(1+\gamma)/2} \left\{ 1 - \left[1 - S_e^{(1-\gamma)/m} \right]^m \right\}^2$$ (2.3.5) The fracture-matrix interface area reduction factor (see Section 2.1) is given by $$a_{fm} = S_e^{1+\gamma} \tag{2.3.6}$$ The AFC is invoked by selecting $\gamma > 0$, which is provided as an additional parameter of the standard van Genuchten model (ICP=7) through variable CP(6,NMAT). Fracture-matrix interface area reduction according to Eq. (2.3.6) is invoked by selecting ISOT between -10 and -12. The AFC is implemented by modifying the capillary pressure and relative permeability functions. The implementation is tested by directly comparing the values (i.e., saturation, capillary pressure, and relative permeability) given in the TOUGH2 output file with the ones calculated using Eqs. (2.3.2) through (2.3.5). The TOUGH2 input file shown in Figure 2.3.1 is used for testing of the AFC as well as other requirements (see below). | (2) Mod
(3) Mod
(4) New
(5) New
(6) Han | ified
ified
obse
obse
dling | racture Co
Brooks-Co
van Genuc
rvation ty
rvation ty
of porosi
applicatio | rey functi
hten funct
pe SECONDA
pe HEAT FI
ty | ion
ARY | | • | | | |---|---|---|--|------------|---------|---------|-----|-------| | ROCKS | 1 | *2 | *3 | *4 | *5 | *6 | *7 | -*8 | | AFC | 2 | 2000.0 | 0.1 | 1.0E-12 | 1.0E-12 | 1.0E-12 | 2.0 | 900.0 | | 7 | | 0.5000 | 0.1000 | 1.000 | | | | | | 7 | | 0.5000 | 0.1000 | 0.001 | 1.0E+10 | 1.0 | 0.5 | | | 3C | 2 | 2000.0 | 0.2 | 1.0E-12 | 1.0E-12 | 1.0E-12 | 2.0 | 900.0 | | 10 | | 0.3000 | 0.1000 | | | | | | | 10 | | 2.0000 | 1000.0 | 0.100 | | | | | | 7G | 2 | 2000.0 | 0.3 | 1.0E-12 | 1.0E-12 | 1.0E-12 | 2.0 | 900.0 | | 11 | | 0.3000 | 0.1000 | | | | | | | 11 | | 3.0000 | 1000.0 | 0.100 | | | | | | BC2 | 2 | 2000.0 | 0.2 | 1.0E-12 | 1.0E-12 | 1.0E-12 | 2.0 | 900.0 | | 10 | | 0.2000 | 0.1000 | 1.0 | | | | | | 10 | _ | 2.0000 | 1000.0 | 7000.0 | | | 0.3 | | | /G2 | 2 | 2000.0 | 0.3 | 1.0E-12 | 1.0E-12 | 1.0E-12 | 2.0 | 900.0 | | 11 | | 0.2000 | 0.1000 | 1.0 | | | | | | 11 | | 3.0000 | 1000.0 | 7000.0 | | | 0.3 | | | | _ | | | | *5 | *6 | *7 | *8 | | 3 | 1 | 11000080 | 0100000000
1.0 | 400001000 | | | | | | | | 1.0E5 | | 10.3 | | 20.0 | | | | WLTI | 1 | | *3 | | *5 | | *7 | *8 | | 2 | 3 | 2 6 | | | | | *7 | | | SLEME
SLM 1 | 1 | AFC | 0.1 | 4 | | | | | | ELM 2 | | BC | 0.1 | | | | | | | ELM 3 | | VG | 0.1 | | | | | | | CONNE | 1 | *2 | *3 | *4 | *5 | *6 | *7 | *8 | | ELM 1EL | | _ | -10 | 0.05 | 0.05 | 0.10 | | | | ELM 2EL | м 3 | | 1 | 0.05 | 0.05 | 0.10 | | | | | | | | | | | *7 | | | | 1 | *2 | _ | *4- | *5 | *6 | *7` | *8 | | ELM 1 | | 1 185 | 0.4 | 10.0 | | | | | | ELM 2 | | 1.1E5 | 0.5 | 10.3 | | 50.0 | | | | | | 1.0E5 | 0.5 | 10.3 | | 20.0 | | | | | | | | | | | | | Figure 2.3.1. TOUGH2 input file $\nu\nu$ used for testing of Active Fracture Concept, modified Brooks-Corey and van Genuchten functions, newly implemented observation types, and handling of porosity. The parameters used for the AFC as given in the TOUGH2 input file (see Figure 2.3.1) are summarized in Table 2.3.1. Table 2.3.1. Parameters of AFC | Parameter | TOUGH2 | Value | |------------|--------------|---------| | | Parameter | | | S_{lr} | RP(2), CP(2) | 0.10 | | γ . | CP(6) | 0.50 | | α | CP(3) | 0.001 | | m | RP(1), CP(1) | 0.50 | | n=1/(1-m) | - | 2.00 | | k | PER(1) | 1.0E-12 | | Α | AREAX | 0.10 | | d_1, d_2 | DEL1, DEL2 | 0.05 | Figure 2.3.2 shows an excerpt from the TOUGH2 output file vv.out, which is obtained by running the problem with the following command line: The liquid saturation in gridblock "ELM 1", to which the AFC characteristic curves are assigned, is 0.69998. Inserting this value along with the parameters of Table 2.3.1. into Eqs. (2.3.2), (2.3.4), and (2.3.5) yields the following capillary pressure and liquid relative permeability: $$S_e = \frac{0.69998 - 0.1}{1 - 0.1} = 0.66664$$ $$p_c = -\frac{1}{0.001} \left[0.66664^{(0.5 - 1)/0.5} - 1 \right]^{1/2.0} = -707.15$$ $$k_{rl} = 0.66664^{(1 + 0.5)/2} \left\{ 1 - \left[1 - 0.66664^{(1 - 0.5)/0.5} \right]^{0.5} \right\}^2 = 0.13177$$ These values are consistent with the ones reported in the TOUGH2 output file (Figure 2.3.2). The fracture-matrix interface area reduction factor (see Section 2.1) is given by Eq. (2.3.6): $$a_{fm} = 0.66664^{1+0.5} = 0.5443$$ Applying Darcy's law between gridblocks "ELM 2" and "ELM 1" yields: $$\begin{split} q_{ELM2-ELM1} &= -k \cdot A \cdot a_{fm} \frac{k_{rl}}{\mu_l} \rho_l \left(\frac{p_{ELM1} - p_{ELM2}}{d_1 + d_2} \right) \\ &= -10^{-12} \cdot 0.1 \cdot 0.5443 \frac{0.13177}{5.4418 \cdot 10^{-4}} 988.07 \left(\frac{1.0704 \cdot 10^5 - 1.0002 \cdot 10^5}{0.05 + 0.05} \right) \\ &= -9.142 \cdot 10^{-4} \, kg \, / \, s \end{split}$$ which is consistent with the liquid flux at the first connection. These results fulfill Requirement 3. | TOUG | H2 inpu | t fi | le for | V&V 0: | | | | | | | · · · · · · | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | · · · · · · · · · · · · · · · · · · · | |---------------------------|--------------------------------|----------------------|---------------------|---------------------|---|----------------------|------------------|-----------------------------|----------------|-----------------------------|---------------|---------------------------|--------------|----------------------|-------------------------|---------------------------------------|----------------|-----------------|-------------------------|------------------|-----------------------------|---------------------------------------| | @@@@ | | | DATA A | | (1,
@@@@@@@ | 3)-2-TII
.0000000 | | | @@@@@ | @@@@@@@ | @@@@ @ | @@@@@@ | @@@@@ | eeeee | 00000 | 99999 | | | | | .574E-04
@@@@@@ | | | 0.10 | AL TIME
0000E+0:
0000E+0 | 1 | KCYC
1
@@@@@@ | ITER
3
 @@@@@ | ITERC
3
@@@@@@@ | KON
2
@@@@@@@ | 0 | DX1M
.22506E+
!@@@@@@ | | DX2M
0.23491E
0000000 | | DX3M
0.11000
@@@@@@ | | 0.2 | X. RE
4540E
00000 | -08 | | ER
1
0000 | KER
2
@@@@@ | 30000 | DELTE
0.10000
0000000 | DE+01 | | ELEM. | . INDE | x | P
(PA) | (1 | T
DEG-C) | SG | | SL | | XAIRG | | XAIRL | | PSAT
(PA | | | AP
PA) | | D(
(KG/ | ;
M**3) | DI
(KG/N | | | ELM
ELM
ELM
@@@@ | 2 | 2 0.3 | 10134E+
10005E+ | 06 0.2
06 0.2 | 49999E+03
20001E+03
20000E+03
@@@@@@@@ | 0.299
0.299 | 99E+00
99E+00 | 0.70001 | LE+00
LE+00 | 0.98551
0.98533 | E+00 | 0.15914
0.15707 | E-04
E-04 | 0.233 | 57E+04 | 413
410 | 3229E
0956E | +04
+04 | 0.119 | 36E+01
33E+01 | 0.9983 | 32E+03
32E+03 | | | TC | UGH2 | input | file | for V&V | of: | | | | | | | | | | | | | | | | | | 0 | EL | EM1 | ELEM2 | INDE | X FLO | | FLOH/F | | | OF
G/S) | | (GAS)
G/S) | | =
O(LIQ.
KG/S) | 1 -
.) V | ITER
/EL (GA
(M/S) | S) | - | - TI
EL(LI(
(M/S) | | .10000E | 3+01 | | @@@@ | E | LM 1
LM 2
@@@@ | | | 1 -0.353
2 -0.183
@@@@@@@ | 07E+02 | 0.851 | 96E+05 | -0.21 | 488E-03 | -0.5 | 2482E-0 | 5 -0.2 | 0963E | -03 -0 | 0.2442 | 28E-0 | 3 -0 | .4999 | E-05 | @@@@@@ | 166666 | | | ТC | UGH2 | input | file | for V&V | of: | | | | | | | | | | | | | | | | | | ELEM. | . INDE | к > | x1 | 2 | Κ2 | Х3 | | DX1 | | DX2 | | DX3 | KCYC | =
K(G) | 1 -
AS) | ITER
K(I | LIQ.) | 3 | - TI
H(GA:
(J/K | 3) | .10000E
H(LIC
(J/KC | 2.) | | ELM
ELM
ELM
@@@@ | 2
3 | 2 0.3 | 10134E+
10005E+ | 06 0.1
06 0.1 | 10300E+01
10300E+01
10300E+01
@@@@@@@@ | 2 0.200 | 01E+02
00E+02 | 0.13411 | E+04
E+02 | 12058
69924 | E-04
E-05 | 0.11000 | E-02
E-05 | 0.6173 | L8E-01
L1E+00 | 0.19 | 755E
3583E | +00
+00 | 0.134 | 16E+06
52E+06 | 0.8395 | 59E+05
54E+05 | **Figure 2.3.2.** Excerpt from TOUGH2 output file *vv.out* showing saturation, capillary pressure, and relative liquid permeability of element ELM 1, to which the Active Fracture Concept is
applied. #### 2.4 Modification to Capillary Pressure Functions Modified versions of the Brooks-Corey and van Genuchten models [Luckner et al., 1989] were implemented. In order to prevent the capillary pressure from decreasing towards negative infinity as the effective saturation approaches zero, a linear function is used for saturations S_l below a certain value $(S_{lr} + \varepsilon)$, where ε is a small number. The slope of the linear extrapolation is identical with the slope of the capillary pressure curve at $S_l = S_{lr} + \varepsilon$. Alternatively, the capillary pressure is prevented from becoming more negative than $-p_{c,\max}$. The correct implementation is checked by visual inspection of the capillary pressure curves near residual saturation. Capillary pressure vs. saturation data in the range $0 \le S_l \le 1$ are written to a separate file for plotting when ITOUGH2 command >>> CHARACTERISTIC is given. The plot file $vvi_ch.tec$ was created using the following command line: itough2 -v 3.2 vvi vv 3 & #### 2.4.1 Modification to Brooks-Corey Capillary Pressure Function The modified Brooks-Corey model is invoked by setting both *IRP* and *ICP* to 10. The model is described by the following set of equations (the input parameters are listed in Table 2.4.1.1): $$S_{ec} = \frac{S_l - S_{lrc}}{1 - S_{lrc}} \tag{2.4.1.1a}$$ $$S_{ek} = \frac{S_l - S_{lrk}}{1 - S_{lrk} - S_{gr}}$$ (2.4.1.1b) $$p_c = -p_e (S_{ec})^{-1/\lambda}$$ for $S_l \ge (S_{lrc} + \varepsilon)$ (2.4.1.2a) $$p_{c} = -p_{e} \left(\frac{\varepsilon}{1 - S_{lrc}} \right)^{-1/\lambda} - \frac{p_{e}}{\lambda} \left(\frac{\varepsilon}{1 - S_{lrc}} \right)^{-\frac{1 - \lambda}{\lambda}} \left(S_{l} - S_{lrc} - \varepsilon \right) \quad \text{for } S_{l} < (S_{lrc} + \varepsilon) \quad (2.4.1.2b)$$ $$p_c \ge -p_{c,\text{max}} \tag{2.4.1.3}$$ $$k_{rl} = S_{ek} \frac{2-3\lambda}{\lambda} \tag{2.4.1.4a}$$ $$k_{rg} = (1 - S_{ek})^2 \left(1 - S_{ek} \frac{2 + \lambda}{\lambda}\right)$$ (2.4.1.4b) $$k_{rg} = 1 - k_{rl} (2.4.1.4c)$$ Table 2.4.1.1. Input Parameters for Modified Brooks-Corey Model | Parameter | Variable | Description | |-----------|----------------------|---| | IRP | 10 | select Brooks-Corey relative permeability model | | RP(1) | S_{lrk} | residual liquid saturation for relative permeability functions | | RP(2) | S_{gr} | residual gas saturation | | RP(3) | (flag) | if zero, use (2.4.1.4b), otherwise (2.4.1.4c) | | ICP | 10 | select Brooks-Corey capillary pressure model | | CP(1) | À | pore size distribution index | | CP(2) | p_{e} | gas entry pressure [Pa] | | CP(3) | ε or | if CP(3) = 0 then $p_{c,\text{max}} = 10^{50}$, $\varepsilon = -1$ | | | $p_{c,\mathrm{max}}$ | if $0 < CP(3) < 1$ use linear model (2.4.1.2b) for $S_l < S_{lr} + \varepsilon$ | | | | if CP(3) \geq 1, then $p_{c,\text{max}} = \text{CP(3)}$, $\varepsilon = -1$ | | CP(6) | S_{lrc} | if zero, then $S_{lrc} = S_{lrk}$ | Figure 2.4.1.1 shows two modified Brooks-Corey capillary pressure functions. The first one, shown by the solid line, was produced with $CP(3) = p_{c,\text{max}} = 7000$, limiting the capillarity to values larger than $p_c = -7000$ Pa. The second curve, shown by the broken line, was produced with $CP(3) = \varepsilon = 0.1$, leading to a linear decrease in capillary pressure for $S_l < S_{lrc} + \varepsilon$, tangential to the standard Brooks-Corey curve at $S_l = S_{lrc} + \varepsilon$. The curves shown in Figure 2.4.1.1 reflect the intended behavior, fulfilling Requirement 4.1. Figure 2.4.1.1. Modified Brooks-Corey capillary pressure curves. #### 2.4.2 Modification to van Genuchten Capillary Pressure Function The modified van Genuchten model is invoked by setting both *IRP* and *ICP* to 11. The model is described by the following set of equations (the input parameters are described in Table 2.4.2.1): $$S_{ec} = \frac{S_l - S_{lrc}}{1 - S_{lrc}}$$ (2.4.2.1a) $$S_{ek} = \frac{S_l - S_{lrk}}{1 - S_{lrk} - S_{gr}}$$ (2.4.2.1b) $$p_c = -\frac{1}{\alpha} \left[\left(S_{ec} \right)^{-1/m} - 1 \right]^{1/n}$$ for $S_l \ge \left(S_{lrc} + \varepsilon \right)$ (2.4.2.2a) linear model with continuous slope at $S_l = S_{lrc} + \varepsilon$ for $S_l < (S_{lrc} + \varepsilon)$ (2.4.2.2b) $$p_c \ge -p_{c,\text{max}} \tag{2.4.2.3}$$ $$k_{rl} = S_{ek}^{1/2} \left[1 - \left(1 - S_{ek}^{1/m} \right)^m \right]^2$$ (2.4.2.4a) $$k_{rg} = (1 - S_{ek})^{1/3} [1 - S_{ek}^{1/m}]^{2m}$$ (2.4.2.4b) $$k_{rg} = 1 - k_{rl}$$ (2.4.2.4c) Table 2.4.2.1. Input Parameters for Modified van Genuchten Model | Parameter | Variable | Description | |-----------|----------------------|---| | IRP | 11 | select van Genuchten relative permeability model | | RP(1) | S_{lrk} | residual liquid saturation for rel. perm. functions | | RP(2) | S_{gr} | residual gas saturation | | RP(3) | (flag) | if zero, use (2.4.2.4b), if non-zero, use (2.4.2.4c) | | ICP | 11 | select van Genuchten capillary pressure model | | CP(1) | n | analogous to pore size distribution index | | CP(2) | 1/lpha | analogous to gas entry pressure [Pa] | | CP(3) | ε or | if CP(3) = 0 then $p_{c,\text{max}} = 10^{50}$, $\varepsilon = -1$ | | | $p_{c,\mathrm{max}}$ | if $0 < CP(3) < 1$ use linear model (2.4.2.2b) for $S_l < S_{lr} + \varepsilon$ | | | | if CP(3) \geq 1, then $p_{c,\text{max}} = \text{CP(3)}$, $\varepsilon = -1$ | | CP(4) | m | if zero then $m = 1 - 1/n$ | | CP(6) | S_{lrc} | if zero, then $S_{lrc} = S_{lrk}$ | Figure 2.4.2.1 shows two modified van Genuchten capillary pressure functions. The first one, shown by the solid line, was produced with $CP(3) = p_{c,\max} = 7000$, limiting the capillarity to values larger than $p_c = -7000$ Pa. The second curve, shown by the broken line, was produced with $CP(3) = \varepsilon = 0.1$, leading to a linear decrease in capillary pressure for $S_l < S_{lrc} + \varepsilon$, tangential to the standard van Genuchten curve at $S_l = S_{lrc} + \varepsilon$. The curves shown in Figure 2.4.2.1 reflect the intended behavior, fulfilling Requirement 4.2. Figure 2.4.2.1. Modified van Genuchten capillary pressure curves. #### 2.5 New Observation Types ITOUGH2 estimates TOUGH2 input parameters based on observations for which a corresponding TOUGH2 output variable is calculated. Two new observation types were added, i.e., new output variables are extracted from TOUGH2 and made available for comparison with observed data. In ITOUGH2, the observation type is specified by second-level commands in block > OBSERVATION. The first new observation type is selected by command >> SECONDARY, extracting the secondary parameters of the specified gridblock. The secondary parameters are the phase-specific fluid properties shown in Table 2.5.1 (see also Figure 2 in *Pruess* [1991]). Table 2.5.1. Secondary Parameters | Index | Parameter | | | | | | | | |-------|------------------------------|--|--|--|--|--|--|--| | 1 | Saturation | | | | | | | | | 2 | Relative permeability | | | | | | | | | 3 | Dynamic viscosity | | | | | | | | | 4 | Density | | | | | | | | | 5 | Specific enthalpy | | | | | | | | | 6 | Capillary Pressure | | | | | | | | | NB+k | Mass fraction of Component k | | | | | | | | The second new observation type is selected by command >> HEAT FLOW, extracting the heat flux of the specified connection. The correct implementation of the new observation types is checked by comparing the values printed to the TOUGH2 output files with those reported as "computed" in the residual analysis of the ITOUGH2 output file. If they are identical, ITOUGH2 correctly extracted the selected values from the TOUGH2 output arrays. File vvi shown in Figure 2.5.1 was used in combination with the TOUGH2 input file vv (see Figure 2.3.1) to generate the requested output. Note that MOP(5) is set to 8 in file vv to produce printout of all secondary parameters. The following command was used: itough2 -v 3.2 vvi vv 3 & The output of this run is also used for testing Requirement 6. ``` > PARAMETERS --- the following block tests new handling of porosity values, i.e., porosity given in block INCON (0.5) will be overwritten by initial guess (0.6) for elements with rock type BC___ (ELM 2) >> POROSITY >>> MATERIAL: BC_ >>>> VALUE >>>> GUESS: 0.6 <<<< <<< > OBSERVATION >> TIME: 1 1.0 --- The following blocks test the new observation type SECONDARY >> SECONDARY parameters --- gas phase >>> ELEMENT: ELM_1 >>>> ANNOTATION: 1,1=gas sat >>>> GAS PHASE >>>> PARAMETER: 1 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 1,2=gas rel per >>>> GAS PHASE >>>> PARAMETER: 2 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 1,3=gas visc >>>> GAS PHASE >>>> PARAMETER: 3 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 1,4=gas dens >>>> GAS PHASE >>>> PARAMETER: 4 >>>> NO DATA <<<< ``` Figure 2.5.1. ITOUGH2 input file vvi. ``` >>> ELEMENT: ELM 1 >>>> ANNOTATION: 1,5=gas enth >>>> GAS PHASE >>>> PARAMETER : 5 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 1,6=gas cap pres >>>> GAS PHASE >>>> PARAMETER : 6 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 1,7=Xwg >>>> GAS PHASE >>>> PARAMETER : 7 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 1,8=Xag >>>> GAS PHASE >>>> PARAMETER: 8 >>>> NO DATA --- liquid phase >>> ELEMENT: ELM_1 >>>> ANNOTATION: 2,1=liq sat >>>> LIQUID PHASE >>>> PARAMETER : 1 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 2,2=liq rel per >>>> LIQUID PHASE >>>> PARAMETER : 2 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 2,3=liq visc >>>> LIQUID PHASE >>>> PARAMETER : 3 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 2,4=liq dens >>>> LIQUID PHASE >>>> PARAMETER: 4 >>>> NO DATA ``` Figure 2.5.1. (cont.) ITOUGH2 input file vvi. ``` >>> ELEMENT: ELM_1 >>>> ANNOTATION: 2,5=liq enth >>>> LIQUID PHASE >>>> PARAMETER : 5 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>>
ANNOTATION: 2,6=liq cap pres >>>> LIQUID PHASE >>>> PARAMETER : 6 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 2,7=Xw1 >>>> LIQUID PHASE >>>> PARAMETER : 7 >>>> NO DATA <<<< >>> ELEMENT: ELM_1 >>>> ANNOTATION: 2,8=Xal >>>> LIQUID PHASE >>>> PARAMETER: 8 >>>> NO DATA <<<< <<< --- the following block tests new observation type HEAT FLOW >> HEAT FLOW >>> CONNECTION: ELM_1 ELM_2 >>>> NO DATA <<<< <<< << > COMPUTATION >> OUTPUT >>> VERSION control statements >>> CHARACTERISTIC curves <<< >> OPTION >>> FORWARD <<< << < ``` Figure 2.5.1. (cont.) ITOUGH2 input file vvi. Figure 2.5.2 shows an excerpt from the TOUGH2 output file. As a result of option MOP(5)=8, the secondary parameters as stored in TOUGH2 vector PAR are printed for gridblock "ELM 1", providing information about viscosity, specific enthalpy, and water mass fractions not available in the standard TOUGH2 output file. Saturation, relative permeability, capillary pressure, air mass fractions, and phase densities can be taken from the standard TOUGH2 output. Heat flow across interface "ELM 2 ELM 1" is -353.11 W. Figure 2.5.3 shows an excerpt from the ITOUGH2 output file *vvi.out*. The column under header "COMPUTED" holds the selected observations extracted from TOUGH2 vector PAR and GLO for the specified gridblock and connection, respectively. The values given in column "COMPUTED" of file *vvi.out* (Figure 5.2.3) and the corresponding output variables in the TOUGH2 output file (Figure 2.5.2) are identical, confirming the correct implementation of Requirement 5. | | ARY PA | RAMETI | SKS |----------------------|---------------------------|-------------------------|-------------------|--------|----------------------|---------------------|-------------------|---------------------------|--------------|-------------------------------|--------------|---------------------------|--------------|------------------------|------------------------|-------------------------|----------------|------|----------------------------|--------------|-------------------------------------| | 3000 | | 0.86 | | | | | | | | E+06 0.0
E+00 0.1 | | | | | | | | .699 | 9977E+0 | 0 0.3 | 131775E+00 | OUGH2 | input | file | for V | V of: | | | | | | | | | | | | | | | | | | | 30000 | | | ATA AFT
300000 | | |)-2-TIM | | | @@@@@ | 3 66666 66 | 0000 | 300000 | @@@@@ | 000000 | @@@@@ | 00000 | | | | | 574E-04 DA | | 0.100 | TIME
00E+01
0000000 | | 1 | 3 | ITERC
3
@@@@@@ | KON
2
1000000 | 0. | X1M
22506E+
1@@@@@@ | | DX2M
.23491E- | | DX3M
0.11000
@@@@@@ | | 0.2 | X. RE
4540E
@@@@ | -08 | | 1 | KER
2
900000 | | DELTEX
0.10000E+0 | | LEM. | INDEX | P
(1 | PA) | | r
G-C) | SG | | SL | | XAIRG | | XAIRL | | PSAT
(PA) | | PCA
(F | AP
'A) | | DG
(KG/M* | **3) | DL
(KG/M**3 | | LM 1
LM 2
LM 3 | 2 | 0.101 | 34E+06 | 0.200 | 001E+02
000E+02 | 0.2999 | 9E+00 | 0.70001
0.70001 | E+00
E+00 | 0.98551 | E+00
E+00 | 0.15914
0.15707 | E-04
E-04 | 0.2336 | 7E+04 | 13 | 229E+
956E+ | 04 (| 0.11936
0.11783 | E+01
E+01 | 0.98807E+
0.99832E+
0.99832E+ | | | TOU | GH2 i | nput fi | ile fo | r V&V o | f: | | | | | | | | | | | | | | | | | | ELE | M1 E | LEM2 | INDEX | FLOH
(W) | ī | FLOH/FI
(J/KG) | | FL | | | (GAS)
G/S) | | =
LO(LIQ.
(KG/S) | | ITER
EL(GA:
(M/S) | | VI | - TIME
EL(LIQ.
(M/S) | | .10000E+01 | | a@@@@@ | ELI | M 1 I
M 2 I
@@@@@ | ELM 3 | 2 | -0.1830 | 7E+02 | 0.851 | 96E+05 | -0.21 | 390E-02
188E-03
3666666 | -0.52 | 482E-0 | 5 -0. | 20963E- | -03 -0 | .2442 | 8E-03 | -0. | 49995E | -05 | 166666666 | | | TOU | GH2 i | nput f: | ile fo | r V&V o | f: | | | | | | | | | | | | | | | | | | INDEX | x 1 | | x2 | | х3 | | DX1 | | DX2 | | DX3 | KCYC | = :
K(G# | l –
.s) | ITER
K(L | =
IQ.) | 3 | - TIME
H(GAS)
(J/KG) | E = 0 | .10000E+01
H(LIQ.)
(J/KG) | | LEM. | | | | | | 0 4000 | 02:02 | - 22506 | F+04 | 0.23491 | E-04 | - 55264 | E-03 | 0.8683 | 2E+00 | 0.13 | 178E+ | 00 (| 0.31337 | E+06 | 0.20934E+ | Figure 2.5.2. Excerpt from TOUGH2 output file *vv.out*, showing secondary parameters, mass fractions, relative permeabilities, capillary pressure, and heat flux. ``` RESIDUAL ANALYSIS RESIDUAL : Measured - computed : Squared weighted residual STD. DEV.: A posteriori standard deviation of computed system response : Local reliability or influence. Observations with Yi < 0.25 are poorly controlled. : Normalized residual. If abs(Wi) > u(0.99) = 2.58 observation is potential outlier. Wi # OBSERVATION AT TIME [sec] MEASURED COMPUTED RESIDUAL 1 POROSITY BC 0.20000E+00 0.60000E+00 -0.40000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+01 0.10000E-49 0.30002E+00 -0.30002E+00 0.10000E+01 0.90014E-01 0.00000E+00 2 1,1=gas sat 1.00 -0.30 3 1,2=gas rel per 0.10000E+01 0.10000E-49 0.86822E+00 -0.86822E+00 0.10000E+01 0.75381E+00 0.00000E+00 1.00 -0.87 0.10000E+01 0.10000E-49 0.19069E-04 -0.19069E-04 0.10000E+01 4 1,3=gas visc 0.36363E-09 0.00000E+00 1.00 0.00 5 1,4=gas dens 0.10000E+01 0.10000E-49 0.11114E+01 -0.11114E+01 0.10000E+01 0.12353E+01 0.00000E+00 1.00 -1.11 0.10000E+01 0.10000E-49 0.31337E+06 -0.31337E+06 1,5=gas enth 0.10000E+01 0.98203E+11 0.00000E+00 1.00 ***** 7 1,6=gas cap pre 0.10000E+01 0.10000E-49 0.00000E+00 0.10000E-49 0.10000E+01 0.10000E-99 0.00000E+00 1.00 0.00 0.74692E-01 -0.74692E-01 1,7=Xwg 0.10000E+01 0.10000E-49 0.10000E+01 0.55789E-02 0.00000E+00 1.00 -0.07 1,8=Xag 0.10000E+01 0.10000E-49 0.92531E+00 -0.92531E+00 0.10000E+01 0.85620E+00 0.00000E+00 1.00 -0.93 0.10000E+01 0.10000E-49 0.69998E+00 -0.69998E+00 10 2,1=liq sat 0.10000E+01 0.48997E+00 -0.70 0.00000E+00 1.00 11 2,2=liq rel per 0.10000E+01 0.10000E-49 0.13178E+00 -0.13178E+00 0.10000E+01 0.17365E-01 0.00000E+00 1.00 -0.13 2,3=liq visc 0.10000E+01 0.10000E-49 0.54417E-03 -0.54417E-03 0.10000E+01 0.29613E-06 0.00000E+00 1.00 0.00 2,4=lig dens 0.10000E+01 0.10000E-49 0.98807E+03 -0.98807E+03 0.10000E+01 0.97629E+06 0.00000E+00 1.00 -988.07 * 2,5=liq enth 0.10000E+01 0.10000E-49 0.20934E+06 -0.20934E+06 0.10000E+01 0.43821E+11 0.00000E+00 1.00 ***** 2,6=liq cap pre 0.10000E+01 0.10000E-49 -0.70715E+03 0.70715E+03 0.10000E+01 0.50006E+06 707.15 * 0.00000E+00 1.00 2,7=Xwl 0.10000E+01 0.10000E-49 0.99998E+00 -0.99998E+00 0.10000E+01 0.99997E+00 0.00000E+00 1.00 -1.00 17 2,8=Xal 0.10000E-49 0.15337E-04 -0.15337E-04 0.10000E+01 0.23524E-09 0.10000E+01 0.00000E+00 1.00 0.00 F-H ELM 1 ELM 2 0.10000E+01 0.10000E-49 -0.35311E+03 0.35311E+03 0.10000E+01 0.12469E+06 0.00000E+00 1.00 353.11 * ``` Figure 2.5.3. Excerpt from ITOUGH2 output file vvi.out, showing residual analysis. #### 2.6 New Priorities in Assigning Porosities In standard TOUGH2, porosity is specified through variable POR in block ROCKS. This value is assigned to all gridblocks which belong to the corresponding rock type. However, this porosity value can be overwritten on a gridblock-to-gridblock basis through variable PORX specified in block INCON. If porosity is one of the parameters to be estimated by inverse modeling, the porosity should be adjusted during the optimization, i.e., the porosity estimate provided by ITOUGH2 must have the highest priority, overwriting values stored in POR and PORX. In order to test the implementation of this concept, we used three different ways to assign porosity to gridblocks "ELM 1", "ELM 2", and "ELM 3" as shown in file $\nu\nu$ (Figure 2.3.1) and $\nu\nu i$ (Figure 2.5.1). The initial guess for porosity specified in the ITOUGH2 input file is different from the corresponding one in the TOUGH2 input file, affecting "ELM 2". Porosity values are also given in block INCON for gridblocks "ELM 1" and "ELM 2". The porosities given in SAVE file $\nu\nu$.sav (Figure 2.6.1) reflect the values actually used in the simulation. A summary is given in Table 2.6.1. The porosity value from block INCON has overwritten that from block ROCKS, and the porosity given in the ITOUGH2 input file has overwritten that from block INCON, in agreement with the intended behavior and thus fulfilling Requirement 6. ``` INCON -- INITIAL CONDITIONS FOR 3 ELEMENTS AT TIME 0.100000E+01 ELM 1 0.4000000E+00 0.1077494458364E+06 0.1030002349086E+02 0.4999944736214E+02 ELM 2 0.60000000E+00 0.1013411139066E+06 0.1029998794249E+02 0.2000110000267E+02 ELM 3 0.30000000E+00 0.1000491003565E+06 0.1029999300758E+02 0.2000000330247E+02 +++ 1 3 5 0.00000000E+00 0.10000000E+01 ``` Figure 2.6.1. File vv.sav showing porosity values used during the simulation. | Table | 2.61 | Porosities | Assigned | and | Actually | Heed | |-------|---------|------------|----------|-----|----------|-------| | Lanc | 4.11.1. | I OLOGICO | LIGHTER | and | ACLUANT | Chica | | Gridblock | ROCKS | INCON | ITOUGH2 | SAVE | |-----------|-------|-------|---------|------| | ELM 1 | 0.1 | 0.4 | - | 0.4 | | ELM 2 | 0.2 | 0.5 | 0.6 | 0.6 | | ELM 3 | 0.3 | - | | 0.3 | ### 2.7 Adjusting Array Dimensions Problems solved by ITOUGH2 vary considerably in size, depending on the number of gridblocks and connections used for discretization, the number of equations solved, the number of parameters estimated, the number of observations available, etc. Due to the overall size of ITOUGH2, it is important to be able to adjust the dimensions of major TOUGH2 and ITOUGH2 arrays to make the code fit on a specific computer with limited memory. Because ITOUGH2 is written in FORTRAN77, no dynamic memory allocation is possible, i.e., arrays are redimensioned by changing their size in the source code, followed by recompilation. The design and architecture of ITOUGH2 allows for safe, convenient, and fast adjustment of major arrays. The purpose of this section is to prove that changing array dimensions using the procedure described herein does not corrupt the code. The ITOUGH2 design makes use of the following features to assure safe maintenance of the code: - (1)
All COMMON blocks holding major arrays are stored in INCLUDE files, making sure that any modification (such as redimensioning) is made consistently throughout the code. - (2) Array dimensions are given by constants, which are defined using PARAMETER statements. This assures consistency of arrays that must have identical dimensions. The PARAMETER statements are summarized in an INCLUDE file named maxsize.inc. - (3) Compilation is performed by means of a makefile and the "make" utility, available on UNIX machines and most PCs. This assures that all files affected by a change are recompiled. - (4) Checks are made within ITOUGH2 to assure that a given array is sufficiently large to accommodate the problem at hand. If an array index is greater than the size of the array, an error message is printed and ITOUGH2 run is stopped. - (5) The array dimensions used for a specific run are reported in output files for traceability (see Section 2.8). The procedure for redimensioning major arrays can be described as follows: - (1) If an ITOUGH2 array is not sufficiently dimensioned, an error message is issued, indicating the constant that must be increased. - (2) The user edits file *maxsize.inc*, adjusting the appropriate constants. - (3) The user types "make" to recompile and relink ITOUGH2. The following test runs assure that (A) ITOUGH2 cannot be run if an array is insufficiently dimensioned, and (B) if ITOUGH2 runs, its arrays are sufficiently dimensioned. In order to perform Test A, the constants defined in file *maxsize.inc* were stepwise reduced until an error message was issued when running the recompiled code using the following command: ``` itough2 -v 3.2 vvRITi vvRIT 3 & ``` An example of an error message is shown in Figure 2.7.1. The constants were then increased by 1 above the values that triggered the error message, yielding the minimum array sizes accepted by ITOUGH2. The corresponding file (named *minsize.inc*) is shown in Figure 2.7.2. ITOUGH2 was then recompiled using minimum array dimensions, and a compiler option, which detects array size violations during compilation and execution. The on-line manual pages for the corresponding compiler option for the SUN Solaris 2 compiler f77, Version FORTRAN 77, SC4.2, are reproduced in Figure 2.7.3. Adjusting array dimensions can be considered safe if ITOUGH2 compiles and runs properly with array dimensioned minimally for the given test problem, since array range violations are most rigorously detected with minimum array dimensions. If arrays are larger than the problem size, no problems are expected to occur. If array dimensions are too large to make ITOUGH2 fit in the computer's memory, either the code cannot be run, or its speed performance deteriorates. Neither case poses a risk that erroneous simulation results are obtained. ITOUGH2 could be compiled and run with minimum array dimensions, fulfilling Requirement 7. ``` ***** ERROR **** * Number of parameters exceeds MAXN = 2. * Increase MAXN in file maxsize.inc and recompile! ***** ERROR **** ``` Figure 2.7.1. Excerpt from ITOUGH2 output file vvRITi.out, show error message if arrays are insufficiently dimensioned. ``` C$$$$$$$$ PARAMETERS FOR SPECIFYING THE MAXIMUM PROBLEM SIZE $$$$$$$$$ C ITOUGH2 and TOUGH2 parameter statements C --- MAXTIM : Maximum number of calibration times INTEGER MAXTIM PARAMETER (MAXTIM=61) TOUGH2 parameter statements C --- MAXEL : Maximum number of elements INTEGER MAXEL PARAMETER (MAXEL=53) --- MAXCON MAXCON : Maximum number of connections INTEGER MAXCON PARAMETER (MAXCON=52) --- MAXK : Maximum number of components/species INTEGER MAXK PARAMETER (MAXK=2) --- MAXEO : Maximum number of equations per block INTEGER MAXEQ PARAMETER (MAXEQ=3) --- MAXPH : Maximum number of phases INTEGER MAXPH PARAMETER (MAXPH=2) : Maximum number of phase-dependent secondary variables other than component mass fractions INTEGER MAXB PARAMETER (MAXB=6) : Maximum number of sources/sinks INTEGER MAXSS PARAMETER (MAXSS=1) : Maximum average number of table entries per sink/source INTEGER MAVTAB PARAMETER (MAVTAB=1) --- MAXROC : Maximum number of rock types INTEGER MAXROC PARAMETER (MAXROC=3) --- MAXTSP : Maximum number of specified time steps divided by 8 INTEGER MAXTSP PARAMETER (MAXTSP=1) --- MAXLAY : Maximum number of reservoir layers for deliverability INTEGER MAXLAY PARAMETER (MAXLAY=1) --- MAXRPCP : Maximum number of parameters for a relative permeability or a capillary pressure function С (to get more than 7, more input lines may be needed!). INTEGER MXRPCP PARAMETER (MXRPCP=7) --- MXPCTB : Maximum points in table of ECM capillary pressure vs. saturation INTEGER MXPCTB PARAMETER (MXPCTB=1) C --- MXTBC : Maximum number of elements with time vs. boundary condition : Maximum number of time vs. pressure data INTEGER MXTBC, MXTBPT PARAMETER (MXTBC=1) PARAMETER (MXTBPT=1) ``` Figure 2.7.2. File maxsize.inc with minimum array dimensions for test problem. ``` Storage for MA28. LIRN is the size of IRN and needs to be larger than the number of non-zeros NZ=(NEL+2*NCON)*NEQ*NEQ. LICN is the length of ICN and CO. INTEGER LICN, LIRN PARAMETER (LIRN=2*(MAXEL+2*MAXCON)*MAXEQ*MAXEQ) PARAMETER (LICN=4*(MAXEL+2*MAXCON)*MAXEQ*MAXEQ) --- Parameters for conjugate gradient package t2cg1 INTEGER NREDM, MNZ, NRWORK, NIWORK PARAMETER (NREDM=MAXEQ*MAXEL) PARAMETER (MNZ=(MAXEL+2*MAXCON)*MAXEQ*MAXEQ) PARAMETER (NRWORK=1000+MNZ+38*NREDM) PARAMETER (NIWORK=32+MNZ+5*NREDM) --- Parameters for IFS MAXIFSP : Maximum number of IFS parameters : Maximum number of IFS parameters to be estimated INTEGER MAXIFSP, MAXTR PARAMETER (MAXIFSP=1, MAXTR=1) ***************** ITOUGH2 parameter statements *************** --- MAXN : Maximum number of parameters to be estimated INTEGER MAXN PARAMETER (MAXN=3) C --- MAXO : Maximum number of datasets INTEGER MAXO, MAXOTWO PARAMETER (MAXO=2) PARAMETER (MAXOTWO=2*MAXO) : Maximum number of calibration points (approx. number of datasets times number of calibration times) INTEGER MAXM PARAMETER (MAXM=123) : Max number of paired data --- MAXPD INTEGER MAXPD PARAMETER (MAXPD=120) : Dimension of array RPAR and IPAR, ROBS and IOBS --- MAXR INTEGER MAXR PARAMETER (MAXR=10) --- MAXBRK : Max number of points in time at which SAVE file is written (restart) INTEGER MAXBRK PARAMETER (MAXBRK=1) : Max number of elements with new initial conditions after break --- MAXEBRK INTEGER MAXEBRK PARAMETER (MAXEBRK=1) --- MAXCOEFF : Max number of coefficients for data modeling functions INTEGER MAXCOEFF PARAMETER (MAXCOEFF=1) : Max number of Monte Carlo simulations --- MAXMCS INTEGER MAXMCS PARAMETER (MAXMCS=1) --- MAXCURVE : Max number of curves to be plotted INTEGER MAXCURVE PARAMETER (MAXCURVE=6) ``` **Figure 2.7.2.** (cont.) File *maxsize.inc* with minimum array dimensions for test problem. Figure 2.7.3. Manual pages for compiler option -C, checking array subscript violations. ### 2.8 Application Control The application control of ITOUGH2 simulations was enhanced to improve traceability. The following information is printed to either the TOUGH2 output file, the ITOUGH2 output file, or the ITOUGH2 message file: - Starting and ending date and time of run; - Names of TOUGH2 and ITOUGH2 input files; - Directory name of input and output files; - Equation-of-state module used; - Name of script file used to run ITOUGH2; - Command arguments passed to script file; - Name of ITOUGH2 executable; - Type of computer used; - Computer host name; - Login name of user; - Constants used for dimensioning of major arrays (see Section 2.7); - Version control statements for each subroutine. Figures 2.8.1 through 2.8.4 show various excerpts of the ITOUGH2 output file *vvRITi.out*. Note the correct reporting of command line arguments, and the array dimension statements, which agree with the values given in include file *maxsize.inc*, shown in Figure 2.7.2. Requirement 8 is considered fulfilled. ``` a a a @ æ a aa 000 aaaaaa V3.2 (May 1998) FOR SUN WORKSTATION, S. FINSTERLE ______ >>>>>>> 25-Jun-98 10:48 <<<<<<< ______ ITOUGH2 INPUT FILE : vvRITi : vvRIT TOUGH2 INPUT FILE : /m/presto/u/finster/itough2v3.2/TestCases DIRECTORY EQUATION OF STATE MODULE NO. : 3 - Two-phase, non-isothermal flow of water and air : WATER AIR COMPONENTS LIQUID PHASES : GAS : TOUGH2 input file for simulating two-phase, transient 'Darcy' experiment TOUGH2 TITLE ``` Figure 2.8.1. Excerpt from ITOUGH2 output file vvRITi.out, showing starting date, input file names, directory, and number of equation-of-state module used. ``` COMPUTER SYSTEM ========== : SUN Workstation Machine type : /m/presto/u/finster/bin/itough2 UNIX script file name : -v 3.2 vvRITi vvRIT 3 UNIX command line arguments : presto.lbl.gov Host name : finster User name : /m/presto/u/finster/itough2v3.2/itough2_3.presto.lbl.gov Executable Computer is as fast as a SUN ULTRA1 86 lines read, 0.32 CPU-seconds used --- End of ITOUGH2 input job: ``` Figure 2.8.2. Excerpt from ITOUGH2 output file vvRITi.out, showing information regarding computer system used and command line arguments. | ARRAY DIN | MENSIO | NS (SEE | FILE maxsize.inc) | |-----------|--------|---------|---| | MAXEL | = | 53 | Maximum number of elements | | MAXCON | = | 52 | Maximum number of connections | | MAXK | = | 2 | Maximum number of components | | MAXEQ | = | 3 | Maximum number of equations | | MAXPH | = | 2 | Maximum number of phases | | MAXB | = | 6 | Maximum number of phase-dependent secondary variables | | MAXSS | = | 1 | Maximum number of sinks/sources | | MAVTAB | = | 1 | Maximum average number of table entries per sink/source | | MAXROC | = | 3 | Maximum number of rock types | | MAXTSP | = | 1 | Maximum number of specified time steps, divided by eight | | MAXLAY | = | 1 | Maximum number of reservoir layers for wells on deliverability | | MXRPCP | = | 7 | Maximum number of parameters for relative permeability and capillary pressure functions | | MXPCTB | = | 1 |
Maximum number of points in table for ECM capillary pressure | | MXTBC | = | 1 | Maximum number of elements with time vs. boundary condition | | MXTBCT | = | 1 | Maximum number of time vs. pressure data | | MAXTIM | = | 61 | Maximum number of calibration times | | MAXN | = | 3 | Maximum number of parameters to be estimated | | MAXO | = | 2 | Maximum number of datasets | | MAXM | = | 123 | Maximum number of calibration points | | MAXPD | = | 120 | Maximum number of paired data | | MAXR | = | 10 | Maximum number of elements or indicesof each parameter or observation | | MAXBRK | = | 1 | Maximum number of points in time at which SAVE file is written for restart | | MAXEBRK | = | 1 | Maximum number of elements with new initial conditions after restart | | MAXCOEFF | = | . 1 | Maximum number of coefficients for data modeling functions | | MAXMCS | | 1 | Maximum number of Monte Carlo simulations | | MAXCURVE | = | 6 | Maximum number of curves to be plotted | | MAXXGR | = | 3 | Dimension of third index of array XGUESSR | | MTYPE | = | 17 | Number of observation types | | MPFMT | = | 6 | Number of plot file formats | | MAXPV | # | 4 | Maximum number of primary variables | Figure 2.8.3. Excerpt from ITOUGH2 output file vvRITi.out, showing information regarding computer system used and command line arguments. | PROGRAM VE | ERSION | DATE | | COMMENT | |------------------------|--------|---------------------------|--------------|--| | ITOUGH2 | | Current ver | sion | V3.2 (May 1998) | | ITOUGH 1 | .0 | 1 AUGUST | 1992 | ITOUGH User's Guide, Version 1.0, Report NIB 92-99 | | ITOUGH2 2 | . 2 | 1 FEBRUARY | 1994 | ITOUGH2 User's Guide, Version 2.2, Report LBL-34581 | | ITOUGH2 3 | .0 | 12 JULY | 1996 | YMP Software qualification, Report LBNL-39489 | | ITOUGH2 3 | .1 | 1 APRIL | 1997 | ITOUGH2 Command Reference, Version 3.1, Report LBNL-40041 | | ITOUGH2 3 | .2 | 1 JULY | 1998 | ITOUGH User's Guide, Version 1.0, Report NIB 92-99 ITOUGH2 User's Guide, Version 2.2, Report LBL-34581 YMP Software qualification, Report LBNL-39489 ITOUGH2 Command Reference, Version 3.1, Report LBNL-40041 YMP Software qualification, Report LBNL-42002 | | WHATCOM 1 | | 10 AUGUST | 1993 | #35: Q: WHAT COMPUTER IS USED? A: SUN | | CALLSIG 1. | | 5 DECEMBER | | #112: SIGNAL HANDLER | | CPUSEC 1 | | 10 AUGUST | 1993 | #: RETURNS CPU-TIME (VERSION SUN) | | OPENFILE 2. | | 4 JUNE | 1996 | #31: OPENS MOST OF THE FILES | | LENOS 1 | | 1 MARCH | 1992 | #28: RETURNS LENGTH OF LINE | | | .0 | 1 AUGUST | 1992 | #86: CALCULATE MACHINE DEPENDENT CONSTANTS | | ITHEADER 3. | | 27 MAY | 1998 | #29: PRINTS ITOUGH2 HEADER | | DAYTIM 1 | | 10 AUGUST | 1993 | #32: RETURNS DATE AND TIME (VERSION SUN) | | THEADER 3. | | 27 MAY | 1998 | #30: PRINTS TOUGH2 HEADER | | | . 1 | 21 MARCH | 1997 | READ ALL DATA PROVIDED THROUGH FILE *INPUT*, + SECONDARY MESH + USERX | | CHECKMAX 1. | . 0 | 11 MAY | 1996 | #41: CHECK KEY DIMENSIONS | | FLOPP 1 | .0 | 11 APRIL | 1991 | CALCULATE NUMBER OF SIGNIFICANT DIGITS FOR FLOATING POINT ARITHMETIC | | RFILE 3 | . 2 | 21 OCTOBER | 1997 | INITIALIZE DATA FROM FILES *MESH* OR *MINC*, *GENER*, AND *INCON* | | ITINPUT 1. | | 1 AUGUST | 1992 | # 2: READS COMMANDS OF COMMAND LEVEL 1 | | READCOMM 2. | | 14 JUNE | 1996 | #24: READS A COMMAND | | FINDKEY 1. | | 4 AUGUST | 1993 | #25: READS A KEYWORD | | | .0 | 1 AUGUST | 1992 | #26: CONVERTS LOWER TO UPPER CASE | | INPARAME 3. | | 6 FEBRUARY | | # 3: READS PARAMETERS TO BE ESTIMATED | | | .1 | 17 MARCH | 1997 | # 4: READS PARAMETER VALUES, WEIGHTS, ETC. | | INELEM 3 | | 3 APRIL | 1997 | #23: READS GRID BLOCK NAME AFTER A COLON | | NEXTWORD 2. | | 9 FEBRUARY | | #27: EXTRACTS NEXT WORD ON A LINE | | | .1 | 17 MARCH | 1997 | #11: READS WEIGHT, BOUNDS, ANNOTATION, AND PARAMETERS | | READREAL 1. | | 1 AUGUST | 1992 | #22: READS A REAL AFTER A COLON | | READINT 1. | | 1 AUGUST | 1992 | #21: READS AN INTEGER AFTER A COLON | | INOBSERV 3. | | 2 OCTOBER
29 APRIL | 1997 | #12: READS TYPE OF OBSERVATION
#13: READS TIMES AT WHICH OBSERVATIONS ARE AVAILABLE | | INTIMES 3 | | 13 DECEMBER | 1997
1995 | #13: READS TIMES AT WHICH OBSERVATIONS ARE AVAILABLE #15: READS OBSERVATION INFOS | | INOBS 2 | | 13 DECEMBER
13 JANUARY | 1995 | #17: READS OBSERVATION INFOS
#17: READS ALL OBSERVED DATA | | INOBSDAT 2. | | | 1996 | #17: READS ALL OBSERVED DATA #19: READS PAIRED DATA SET | | INPAIRED 3. | | 2 APRIL
7 OCTOBER | 1997 | #19: READS FAIRED DATA SET
#20: READS WEIGHTS | | INWEIGHT 3. | | 1 AUGUST | 1997 | #20: READS WEIGHTS #16: READS VARIOUS COMPUTATIONAL PARAMETERS | | INCOMPUT 1. | | 27 MARCH | 1992 | #83: READS TOLERANCE/STOPPING CRITERIA | | INTOLER 3 | | 20 DECEMBER | | #81: READS COMMANDS FOR ERROR ANALYSIS | | INERROR 2 | | 13 JANUARY | 1994 | #80: READS COMMANDS FOR ERROR ANALISIS #80: READS OUTPUT OPTIONS | | INPRINT 2. GETINDEX 2. | | 11 MARCH | 1994 | #45: GETS INDEX OF ELEMENTS, CONNECTIONS, AND SOURCES | | INIGUESS 3 | | 6 FEBRUARY | | #38: INITIAL GUESS OF PARAMETERS (XGUESS) | Figure 2.8.4. Excerpt from ITOUGH2 output file vvRITi.out, showing version control statements. | GETNMAT 2 | .1 | 21 | SEPTEMBER | 1993 | #44: IDENTIFIES MATERIAL NUMBER | |-------------|--------|----|-----------|------|--| | IXLBXUB 2. | . 1 | 21 | SEPTEMBER | 1993 | #43: INITIALIZES ARRAY XLB AND XUB | | SETWSCAL 2. | .5 | 8 | AUGUST | 1996 | #39: INITIALIZES ARRAY WSCALE | | OBSMEAN 1. | .0 | 1 | AUGUST | 1992 | #40: CALCULATES MEAN OF OBSERVATIONS | | SETXSCAL 1. | .0 | 1 | AUGUST | 1992 | #42: INITIALIZES ARRAY XSCALE | | IN_OUT 3. | .2 | 27 | MAY | 1998 | #35: PRINTS A SUMMARY OF INPUT DATA | | TIMEWIND 2. | .5 | 30 | NOVEMBER | 1995 | #53: SETS TIME WINDOW | | PRSTATUS 3. | .1 | 20 | FEBRUARY | 1997 | #91: PRINTS STATUS MESSAGES | | ERRORMSG 2. | .5 | 21 | MARCH | 1996 | #34: PRINTS ERROR MESSAGES | | LEVMAR 2 | .5 | 26 | MARCH | 1996 | #99: LEVENBERG-MARQUARDT OPTIMIZATION ALGORITHM | | FCNLEV 2 | .3 | 10 | JANUARY | 1995 | #50: RETURNS WEIGHTED RESIDUAL VECTOR | | UPDATE 3. | . 2 | 7 | APRIL | 1998 | #37: UPDATES PARAMETERS | | PRIORINF 2. | .1 | 21 | SEPTEMBER | 1993 | #48: PRIOR INFORMATION | | OBSERVAT 3. | . 2 | 2 | OCTOBER | 1997 | #62: COMPARES MEASURED AND CALCULATED QUANTITIES | | GETMESH 1. | . 1 | 15 | APRIL | 1993 | #47: READS FILE MESH, MINC, GENER, AND INCON | | GETINCON 3. | . 2 | 18 | NOVEMBER | 1997 | #46: READS FILE INCON | | INITTOUG 2. | .5 | 18 | APRIL | 1996 | #54: INITIALIZES TOUGH2 RUN (REPLACES CYCIT) | | EOS 1 | . 0 | 28 | MARCH | 1991 | *EOS3* THERMOPHYSICAL PROPERTIES MODULE FOR WATER/AIR | | SAT 1 | 0 | 22 | JANUARY | 1990 | STEAM TABLE EQUATION: SATURATION PRESSURE AS FUNCTION OF TEMPERATURE | | VISW 1 | .0 | 22 | JANUARY | 1990 | VISCOSITY OF LIQUID WATER AS FUNCTION OF TEMPERATURE AND PRESSURE | | COWAT 1 | .0 | 22 | JANUARY | 1990 | LIQUID WATER DENSITY AND INT. ENERGY AS FUNCTION OF TEMPERATURE AND PRESSURE | | PCAP 3. | . 2 | 1 | JUNE | 1998 | CAPILLARY PRESSURE | | SUPST 1 | .0 | 29 | JANUARY | 1990 | VAPOR DENSITY AND INTERNAL ENERGY AS FUNCTION OF TEMPERATURE AND PRESSURE | | VISCO 1. | .0 | | FEBRUARY | 1990 | CALCULATE VISCOSITY OF VAPOR-AIR MIXTURES | | COVIS 1 | .0 | 1 | FEBRUARY | 1990 | COEFFICIENT FOR GAS PHASE VISCOSITY CALCULATION | | VISS 1 | .0 | 22 | JANUARY | 1990 | VISCOSITY OF VAPOR AS FUNCTION OF TEMPERATURE | | | . 2 | 1 | JUNE | 1998 | RELATIVE PERMEABILITIES | | BALLA 1. | .0 | 5 | MARCH | 1991 | PERFORM SUMMARY BALANCES FOR VOLUME, MASS, AND ENERGY | | | .0 | | MARCH | 1991 | PROVIDE PRINTOUT OF MOST DATA PROVIDED THROUGH FILE *INPUT* | | CALLTOUG 3. | . 1 | 2 | APRIL | 1997 | #55: CALLS TOUGH2 FOR ONE TIME STEP | | TSTEP 3. | .1 | | MARCH | 1997 | ADJUST TIME STEPS TO COINCIDE WITH USER-DEFINED TARGET TIMES | | | . 2 | 1 | JUNE | 1998 | ASSEMBLE ALL ACCUMULATION AND FLOW TERMS | | LINEQ 0. | .91 CG | 31 | JANUARY | 1994 | INTERFACE FOR LINEAR EQUATION SOLVERS | | | | | | | CAN CALL MA28 OR A PACKAGE OF CONJUGATE GRADIENT SOLVERS | | CONVER 2. | | | JUNE | 1996 | UPDATE PRIMARY VARIABLES AFTER CONVERGENCE IS ACHIEVED | | | .5 | | APRIL | 1996 | PRINT RESULTS FOR ELEMENTS, CONNECTIONS, AND SINKS/SOURCES | | OBSERVED 2. | | | AUGUST | 1996 | #78: RETURNS OBSERVED DATA AS A FUNCTION OF TIME | | OBJFUN 2. | | | MARCH | 1996 | #49: COMPUTE OBJECTIVE FUNCTION | | WRITEPAR 1. | | | JUNE | 1996 | #56: WRITE BEST FIT PARAMETER SET AND BLOCK ROCKS | | PLOTFILE 3. | | | OCTOBER | 1997 | #58: WRITES PLOTFILE IN PLOPO-FORMAT | | | .1 | | | 1997 | #51: CALCULATES FINITE DIFFERENCE JACOBIAN | | MLLAMBDA 2. | | | | 1994 | #67: ESTIMATES NEW LAMBDAS | | TERMINAT 3. | | | MAY | 1998 | 61: PERFORM ERROR ANALYSIS AND TERMINATE ITOUGH2 | | | .5 | | JANUARY | 1996 | AT THE COMPLETION OF A TOUGH2 RUN, WRITE PRIMARY VARIABLES ON FILE *SAVE* | | QFISHER 2. | | | | 1994 | #77: RETURNS QUANTILE OF F-DISTRIBUTION | | QCHI 1. | . 0 | 1 | AUGUST | 1992 | #88: RETURNS CHI-SQUARE QUANTILE | | POLYNOM 1. | . 0 | 1 | AUGUST | 1992 | #89: EVALUATES POLYNOM | Figure 2.8.4. (cont.) Excerpt from ITOUGH2 output file vvRITi.out, showing version control statements. ``` #59: PERFORMS EIGENANALYSIS EIGEN 3.2 14 AUGUST 1997 29 SEPTEMBER 1993 #68: COMPUTE LOG-LIKELIHOOD LOGLIKE 2.1 13 JANUARY 1996 #87: RETURNS QUANTILE OF NORMAL DISTRIBUTION QNORMAL 2.5 MOMENT 3.2 23 JULY 1997 #90: MOMENTS OF DISTRIBUTION 3.1 17 APRIL 1997 #113: SORTS ARRAY SORT MOMENT 3.1 17 APRIL 1997 #75: LINEAR REGRESSION ANALYSIS 1993 PLOTIF 15 FEBRUARY #96: PLOT INTERFACE REFORMAT 1.1 15 APRIL 1993 #97: REFORMATS PLOT FILES 15 FEBRUARY 1993 #98: RETURNS TEXT BETWEEN QUOTES 2nd ITOUGH2 simulation job completed: 25-Jun-98 10:51 --- CPU time used = 0 error(s) and 0 warning(s) detected ``` Figure
2.8.4. (cont.) Excerpt from ITOUGH2 output file vvRITi.out, showing version control statements. ### 2.9 Regression Testing The purpose of regression testing is to make sure that the various modifications made to ITOUGH2 have not corrupted the overall performance of the code. An inversion is performed in the following test case, i.e., the main application model of ITOUGH2 is tested, engaging almost all subroutines and major program options. However, the test case does not make use of any of the new features presented in this report, which makes it compatible with the previously qualified version of the code (ITOUGH2 V3.0, *Finsterle et al.* [1996]). The same test case is run with Versions 3.0 and 3.2, using the following two commands: ``` itough2 -v 3.0 -ito vvRITi.v30.out vvRITi vvRIT 3 & itough2 -v 3.2 vvRITi vvRIT 3 & ``` The test case is similar to sample problem sam1p4i, described in detail in *Finsterle* [1997]. A comparison of output file *vvRITiv30.out* (Figure 2.9.1) with file *vvRITi.out* (Figure 2.9.2) shows that identical parameter estimates and estimation uncertainties were obtained, passing the regression test and fulfilling Requirement 9. It is suggested to use this test case also for installation testing when porting ITOUGH2 from one platform to another. | ?!!!!!!!!!!!!!!!!!! | | 11111111 | 11111 | 11111111111111111111 | | 1111111111111 | 11111111111111 | 111111111 | 1111111111 | 1111111111111 | |--------------------------|-------------------|----------|-------|----------------------|----------------|---------------|----------------|-----------|------------|---------------| | ESTIMATED PARAMETER | V/L/F | ROCKS | PAR | INITIAL GUESS | BEST ESTIMATE | S | TANDARD DEVIA | TIONS | SENSIT | IVITY | | | | | | | | A PRIORI | JOINT | C/J | OUTPUT | OBJ. FUNC. | | log(abs. perm.) | LOG10 | SAND +1 | 1 | -0.1200000E+02 | -0.1169897E+02 | N/A | 0.8606E-02 | 0.514 | 608.3 | 0.952 | | POROSITY SAND | VALUE | SAND | 1 | 0.2500000E+00 | 0.3500000E+00 | N/A | 0.8242E-02 | 0.455 | 222.4 | 0.872 | | Gas entrapped | VALUE | DEFAU | 2 | 0.1025000E+02 | 0.1030000E+02 | N/A | 0.2315E-02 | 0.797 | 489.7 | 2.647 | | 111111111111111111111111 | ! ! ! ! ! ! ! ! ! | | 11111 | !!!!!!!!!!!!!!!!!!!! | | 111111111111 | 11111111111111 | 111111111 | 1111111111 | 1111111111111 | Figure 2.9.1. Excerpt from ITOUGH2 output file vvRITi.v30.out, showing inverse modeling results obtained with previously qualified version ITOUGH2 V3.0. | ?!!!!!!!!!!!!!!!!!! | | | | | | | | | | | | | |--------------------------------------|----------|----------|-------|-----------|--------|---------|------------|---------------|----------------|------------|------------|----------------| | ESTIMATED PARAMETER | V/L/F | ROCKS | PAR | INITIAL | GUESS | BEST | ESTIMATE | S' | TANDARD DEVI | ATIONS | SENSI | TIVITY | | | | | | | | | | A PRIORI | JOINT | C/J | OUTPUT | OBJ. FUNC. | | log(abs. perm.) | LOG10 | SAND +1 | 1 | -0.1200 | 00E+02 | -0. | 11699E+02 | N/A | 0.861E-02 | 0.514 | 608.3 | 0.952 | | POROSITY SAND | VALUE | SAND | 1 | 0.250 | 00E+00 | | 0.350E+00 | N/A | 0.824E-02 | 0.455 | 222.4 | 0.872 | | Gas entrapped | VALUE | DEFAU | 2 | 0.102 | 50E+02 | 0 | .10300E+02 | N/A | 0.231E-02 | 0.797 | 489.7 | 2.647 | | 111111111111111111111111111111111111 | 11111111 | 11111111 | 11111 | !!!!!!!!! | 111111 | 1111111 | 1111111111 | 1111111111111 | !!!!!!!!!!!!!! | 1111111111 | 1111111111 | 11111111111111 | | | | | | | | | | | | | | | Figure 2.9.2. Excerpt from ITOUGH2 output file vvRITi.out, showing inverse modeling results obtained with ITOUGH2 V3.2. # 3. Summary Table 3.1 summarizes the test cases run to qualify ITOUGH2 V3.2 by listing the requirements (see also SCMS Form 2, Point 4), the associated input and relevant output files, and the outcome of the test, i.e., whether the acceptance criteria (SCMS Form 3, Point 1) were met. Table 3.1. Summary of V & V Testing | # | Requirement | Input Files | Output Files | Criteria
Met? | |-----|---|---|--|------------------| | | Fracture-matrix interface area reduced by: | | | | | 1.1 | A constant | vvFM1A
vvFM1B | vvFM1A.out
vvFM1B.out | yes | | 1.2 | Upstream saturation | vvFM2A
vvFM2B | vvFM2A.out
vvFM2A.sav
vvFM2B.ou | yes | | 1.3 | Upstream saturation times a constant | vvFM3A
vvFM3B | vvFM3A.out
vvFM3A.sav
vvFM3B.out | yes | | 1.4 | Upstream relative permeability | vvFM4A
vvFM4B | vvFM4A.out
vvFM4B.ou | yes | | 1.5 | Upstream relative permeability times a factor | vvFM5A
vvFM5B | vvFM5A.out
vvFM5B.ou | yes | | 2 | Free drainage boundary condition | vvFDBC | vvFDBC.out | yes | | 3 | Active Fracture Concept | vv | vv.out | yes | | 4.1 | Modification of Brooks-Corey capillary pressure function | vvi
vv | vvi_ch.tec | yes | | 4.2 | Modification of van Genuchten capillary pressure function | vvi
vv | vvi_ch.tec | yes | | 5 | New observation types SECONDARY and HEAT FLOW | vv
vvi | vvi.out
vv.out | yes | | 6 | New priorities in porosity definition | vvi
vv | vv.out | yes | | 7 | Adjusting array dimensions | vvRITi
vvRIT
vvRIT.dat
minsize.inc | vvRITi.out | yes | | 8 | Application control | vvRITi
vvRIT
vvRIT.dat | vvRITi.out | yes | | 9 | Regression testing | vvRITi
vvRIT
vvRIT.dat | vvRITi.out
vvRIT.v30.ou | yes
1 | Since all acceptance criteria are met, all functional requirements are fulfilled, i.e., ITOUGH2 V3.2 can be considered technically validated in compliance with YMP-LBNL-QIP-SI.0, Rev. 3, Mod. 0. ## Acknowledgment I would like to thank Y.-S. Wu, C. F. Ahlers, M. Bandurraga, H. H. Liu, and J. Birkholzer for their support during the development and testing of the new ITOUGH2 features discussed in this report. The review comments by C. M. Oldenburg are gratefully acknowledged. This work was supported, in part, by the Director, Office of Civilian Radioactive Waste Management, U.S. Department of Energy, through Memorandum Purchase Order EA9013MC5X between TRW Environmental Safety Systems, Inc. and the Ernest Orlando Lawrence Berkeley National Laboratory, under contract No. DE-AC03-76SF00098. ### References - Finsterle, S., *ITOUGH2 Sample Problems*, Report LBNL-40042, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1997. - Finsterle, S., ITOUGH2 Command Reference, Version 3.2, Report LBNL-40041 (updated), Lawrence Berkeley National Laboratory, Berkeley, Calif., 1998. - Finsterle, S., K. Pruess, and P. Fraser, *ITOUGH2 Software Qualification*, Report LBNL-39489, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1997. - Liu, H. H., C. Doughty, and G. S. Bodvarsson, An active fracture model for unsaturated flow and transport in fractured rocks, *Water Resour. Res.*, (in press), 1998. - Luckner, L., M. Th. van Genuchten, and D. Nielsen, A consistent set of parametric models for the two-phase flow of immiscible fluids in the subsurface, *Water Resour. Res.*, 25(10), 2187–2193, 1989. - Pruess, K., *TOUGH User's Guide*, Nuclear Regulatory Commission Report NUREG/CR-4645; also Report LBL-20700, Lawrence Berkeley Laboratory, Berkeley, Calif., 1987. - Pruess, K., TOUGH2—A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, Report LBL-29400, Lawrence Berkeley Laboratory, Berkeley, Calif., 1991. - Pruess, K., A. Simmons, Y.-S. Wu, and G. Moridis, *TOUGH2 Software Qualification*, Report LBL-38383, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1996. - Wu, Y.-S., C. F. Ahlers, P. Fraser, A. Simmons, and K. Pruess, *Software Qualification of Selected TOUGH2 Modules*, Report LBNL-39490, Lawrence Berkeley National Laboratory, Berkeley, Calif., 1996. ## Appendix A: List of Files List of files in directory ~/itough2v3.2 Contains source code and utilities of ITOUGH2 V3.2. See file read.me for installation instructions. -----8121 Jun 30 00:00 Makefile -rw-r--r--1 finster stefan -r--r--1 finster stefan 915 Jun 30 00:00 best.inc 274 Jun 30 00:00 bfact.inc -r--r-- 1 finster stefan -r--r-- 1 finster stefan 519 Jun 30 00:00 break.inc 1436 Jun 30 00:00 caltim.inc 1 finster stefan -r--r--r--232 Jun 30 00:00 carrera.inc -r--r--r--1 finster stefan 197 Jun 30 00:00 comment.inc -r--r--r--1 finster stefan -r--r-- 1 finster stefan 1126 Jun 30 00:00 connect.inc 995 Jun 30 00:00 copa.inc 1 finster stefan -r--r--r--496 Jun 30 00:00 covar.inc -r--r--r--1 finster stefan 1039 Jun 30 00:00 data.inc -r--r--r 1 finster stefan 1377 Jun 30 00:00 elements.inc -r--r-- 1 finster stefan 352 Jun 30 00:00 eos.inc -r--r--r--1 finster stefan 33418 Jun 30 00:00 eos1.f 1 finster stefan -r--r--36279 Jun 30 00:00 eos2.f -r--r--r--1 finster stefan 40621 Jun 30 00:00 eos3.f -r--r--1 finster stefan 1 finster stefan 39616 Jun 30 00:00 eos3ecm.f -r--r--r--52446 Jun 30 00:00 eos4.f -r--r--r--1 finster stefan 35597 Jun 30 00:00 eos5.f -r--r-- 1 finster stefan 42949 Jun 30 00:00 eos9.f -r--r--r--1 finster stefan 1 finster stefan 46563 Jun 30 00:00 eos9ecm.f -r--r---r--r--1 finster stefan 2755 Jun 30 00:00 estim.inc 185 Jun 30 00:00 f1com.inc -r--r--r--1 finster stefan -r--r--r--1 finster stefan 40 Jun 30 00:00 ff.inc 1 finster stefan 1056 Jun 30 00:00 filename.inc -r--r--r--1 finster stefan 734 Jun 30 00:00 fixsize.inc -r--r--r--3244 Jun 30 00:00 flags.inc -r--r--r--1 finster stefan -r--r--r--1 finster stefan 472 Jun 30 00:00 flovel.inc 1 finster stefan 356 Jun 30 00:00 gasprop.inc -r--r--r--236 Jun 30 00:00 gradient.inc -r--r--1 finster stefan 677 Jun 30 00:00 guess.inc -r--r--1 finster stefan 748 Jun 30 00:00 hyster.inc -r--r--1 finster stefan 1 finster stefan 214 Jun 30 00:00 inval.inc -r--r--r--179 Jun 30 00:00 invdir -r--r--1 finster stefan 4120 Jun 30 00:00 it2help -rwxr-xr-x 1 finster stefan -r--r--r--1 finster stefan 239291 Jun 30 00:00 it2help.txt 1 finster stefan 216692 Jun 30 00:00 it2input.f -r--r--1 finster stefan 331336 Jun 30 00:00 it2main.f -r-xr-xr-x 19867 Jun 30 00:00 it2user.f
-r--r--1 finster stefan -r--r--r--1 finster stefan 97659 Jun 30 00:00 it2xxxx.f -r--r--r--1 finster stefan 416 Jun 30 00:00 iter.inc -rwxr-xr-x 1 finster stefan 11967 Jun 30 00:00 itough2 -r--r-- 1 finster stefan 6533 Jun 30 00:00 itough2v32.1st ``` 1 finster stefan -r--r-- 544 Jun 30 00:00 jacobi.inc -rwxr-xr-x 1 finster stefan 3805 Jun 30 00:00 kit -r--r--r-- 1 finster stefan 298 Jun 30 00:00 levmar.inc -r--r--r-- 1 finster stefan 723 Jun 30 00:00 lineg.inc -r--r--r-- 1 finster stefan 114512 Jun 30 00:00 ma28.f -r--r--r-- 1 finster 571 Jun 30 00:00 maxm.inc stefan -rw-r--r-- 1 finster stefan 4589 Jun 30 00:00 maxsize.inc 4589 Jun 30 00:00 maxsize0.inc -rw-r--r-- 1 finster stefan 11073 Jun 30 00:00 mdepcray.f -r--r--r-- 1 finster stefan -r--r--r-- 1 finster 11217 Jun 30 00:00 mdepdec.f stefan -r--r--r-- 1 finster stefan 11070 Jun 30 00:00 mdephp.f 11053 Jun 30 00:00 mdepibm.f -r--r--r-- 1 finster stefan -r--r--r-- 1 finster stefan 4212 Jun 30 00:00 mdeplah.f 11315 Jun 30 00:00 mdepsgi.f -r--r-- 1 finster stefan -r--r--r-- 1 finster 11247 Jun 30 00:00 mdepsun.f stefan -r--r--r-- 1 finster stefan 50718 Jun 30 00:00 meshm.f -r--r--r-- 1 finster 844 Jun 30 00:00 meshm.inc stefan -rw-r--r-- 1 finster stefan 4567 Jun 30 00:00 minsize.inc 376 Jun 30 00:00 mn.inc -r--r-- 1 finster stefan -r--r--r-- 1 finster 129 Jun 30 00:00 nstl.inc stefan 3043 Jun 30 00:00 obser.inc -r--r--r-- 1 finster stefan -r--r--r-- 1 finster stefan 2029 Jun 30 00:00 param.inc -r--r-- 1 finster 1341 Jun 30 00:00 parsel.inc stefan 465 Jun 30 00:00 penalty.inc -r--r--r-- 1 finster stefan 545 Jun 30 00:00 plot.inc -r--r-- 1 finster stefan 1055 Jun 30 00:00 primary.inc -r--r--r-- 1 finster stefan 5272 Jun 30 00:00 prista -rwxr-xr-x 1 finster stefan -r--r--r-- 1 finster stefan 247 Jun 30 00:00 probsize.inc -r--r--r-- 1 finster 557 Jun 30 00:00 ratesave.inc stefan 422 Jun 30 00:00 rconst.inc -r--r--r-- 1 finster stefan 13611 Jun 30 00:00 read.me -r--r-- 1 finster stefan 1 finster 298 Jun 30 00:00 resid.inc -r--r--r-- stefan 612 Jun 30 00:00 rmasvol.inc -r--r--r 1 finster stefan -r--r--r-- 1 finster stefan 1375 Jun 30 00:00 rock.inc 512 Jun 29 09:41 sampleQA drwxr-xr-x 2 finster stefan -r--r--r-- 1 finster stefan 490 Jun 30 00:00 second.inc 887 Jun 30 00:00 siman.inc -r--r--r-- 1 finster stefan -r--r--r-- 1 finster 297 Jun 30 00:00 skinrad.inc stefan -r--r-- 1 finster stefan 401 Jun 30 00:00 stocha.inc 1 finster stefan 65050 Jun 30 00:00 t2cg1.f -r--r-- 162997 Jun 30 00:00 t2f.f -r--r-- 1 finster stefan -r--r-- 1 finster stefan 748 Jun 30 00:00 t2voc.inc 123 Jun 30 00:00 title.inc -r--r-- 1 finster stefan 1752 Jun 30 00:00 tough2 1 finster stefan -rwxr-xr-x -r--r--r-- 1 finster stefan 1807 Jun 30 00:00 units.inc 1 finster stefan 211 Jun 30 00:00 usercom.inc -r--r--r-- -r--r--r-- 1 finster 178 Jun 30 00:00 weight.inc stefan 2238 Jun 30 00:00 wells.inc -r--r-- 1 finster stefan 1 finster stefan 274 Jun 30 00:00 xuser.inc ``` Total: 91 files + 1 subdirectory List of files in directory ~/itough2v3.2/sampleQA Contains input files for running validation problems described in: ITOUGH2 V3.2, Verification and Validation Report Report LBNL-42002, Lawrence Berkeley National Laboratory, Berkeley, Calif. June 1998 | -rwxr-xr-x | 1 finster stefan 4567 Jun 29 09:34 | minsize.inc | |------------|------------------------------------|-------------| | -rw-rr | 1 finster stefan 2573 Jun 29 09:34 | vv | | -rw-rr | 1 finster stefan 2052 Jun 29 09:34 | VVFDBC | | -rw-rr | 1 finster stefan 3751 Jun 29 09:34 | vvFM1A | | -rw-rr | 1 finster stefan 3791 Jun 29 09:34 | vvFM1B | | -rw-rr | 1 finster stefan 3723 Jun 29 09:34 | vvFM2A | | -rw-rr | 1 finster stefan 3842 Jun 29 09:34 | vvFM2B | | -rw-rr | 1 finster stefan 3760 Jun 29 09:34 | vvFM3A | | -rw-rr | 1 finster stefan 3866 Jun 29 09:34 | vvFM3B | | -rw-rr | 1 finster stefan 3720 Jun 29 09:34 | vvFM4A | | -rw-rr | 1 finster stefan 3835 Jun 29 09:34 | vvFM4B | | -rw-rr | 1 finster stefan 3760 Jun 29 09:34 | vvFM5A | | -rw-rr | 1 finster stefan 3857 Jun 29 09:34 | vvFM5B | | -rw-rr | 1 finster stefan 1724 Jun 29 09:34 | VVRIT | | -rw-rr | 1 finster stefan 3219 Jun 29 09:34 | vvRIT.dat | | -rw-rr | 1 finster stefan 2724 Jun 29 09:34 | vvRITi | | -rw-rr | 1 finster stefan 3599 Jun 29 09:34 | vvi | | | | | Total 17 files ## Appendix B: File read.me | READ.ME | READ ME | READ ME. | READ.ME | |---------|---------|----------|---------| | | | | | | @ @ | 00000 | 6666666 | .000 | .000 | @@@ | 999 | .000 | 9666 | 999 | .000 | eeeeeee | @@@ | |------------|-------|---------|----------|------|------------|----------|------|-------------|-----|------|----------------|------------| | @ | | | | | | | | | | | | @ | | @ | 666 | 66666 | @ | .@ | @ | @ | (| <u>a</u> @@ | æ | @ | 6666 | @ | | @ | e. | e e | <u>a</u> | @ | @ | æ | æ | | @ | @ | e e | @ | | @ | @ | @ | @ | æ | @ | @ | @ | @@ | 66 | 99 | @@ | æ | | @ | e. | @ | @ | @ | @ | @ | @ | @ | æ | @ | @@ | @ | | @ | 666 | @ | @ | .e | @ | <u>a</u> | (| 996 | 6 | @ | 666666 | @ | | @ | | | | | | | | | | | | @ | | aa | aaaaa | ааааааа | aaa | aaa | aaa | aaa | aaa | aaaa | aaa | aaa | മരമരമെ | aaa | This flyer contains brief instructions for installing and running ITOUGH2 under UNIX operating system. Machine-dependent routines are provided for the various computer systems. Installing ITOUGH2 on another computer system may require minor modifications of the subroutines provided in file <mdep???.f>. ITOUGH2 can also be compiled on a PC. If the Lahey Compiler is used, the appropriate compiler options and machine-dependent subroutines are provided in files Makefile and mdeplah.f, respectively. The distribution includes the source code, various utility script files, and sample problems: #### Utilities - (1) read.me The file you are reading. - (2) Makefile UNIX makefile for compiling and linking ITOUGH2. - (3) itough2 UNIX script file for running ITOUGH2. (in subdirectory ../bin). See header of file for details. - (6) kit UNIX script file for sending signals to ITOUGH2. (put in subdirectory ../bin). See header of file for details. - (7) it2help UNIX script file for displaying ITOUGH2 manual pages (put in subdirectory ../bin). See header of file for details. - (8) it2help.txt ITOUGH2 manual pages. - (9) invdir Dummy ITOUGH2 input file to solve direct problem only. #### ITOUGH2 FORTRAN source files - (10) *.inc Include files containing COMMON blocks and PARAMETER statements for dimensioning major arrays (see maxsize.inc). - (11) it2main.f ITOUGH2 main subroutines. - (12) it2input.f Subroutines reading ITOUGH2 input file. - (13) it2user.f Subroutines for user-specified parameters, user-specified observations, user-specified boundary conditions, and user-specified data functions. - (14) it2xxxx.f Subroutines for minimization algorithm, matrix operations, eigenanalysis, etc. - (15) mdep???.f Machine-dependent subroutines for ??? ??? = ibm, dec, sun, hp, sgi, star, lah, cray. ## TOUGH2 FORTRAN source files ______ - (16) t2cg1.f Conjugate gradient solvers. - (17) t2f.f Core module of TOUGH2. - (18) meshm.f Module with internal mesh generation facilities. - (19) eos#.f Equation of state module No. #. - (20) ma28.f Direct linear equation solver. Sample problems (subdirectory <sampleQA>) # INSTALLATION ++++++++ Installing ITOUGH2 requires basic knowledge about the UNIX operating system, including shell programming, the makefile utility, changing permissions, and adding a directory to the PATH shell variable. If ITOUGH2 is installed exactly as recommended below, only very minor modifications have to be made to the Makefile and the script files, if at all. (1) Create a new directory in your home directory. Type: cd; mkdir itough2 Multiple ITOUGH2 versions can be installed in subdirectories itough2v? where ? is the version number used with the -v option on the itough2 command line. - (2) Move the compressed tar file it2_tar.Z to directory ~/itough2 or ~/itough2v?: mv it2_tar.Z itough2 - (3) Go to the newly created directory and uncompress the tar file. Type: cd itough2; uncompress it2_tar.Z - (4) Extract the files from the archive file. Type: tar -xvf it2_tar A subdirectory ~/itough2/samples is created containing all the sample problems. The script files (tough2, itough2, prista, it2help, and kit) are copied to subdirectory ../bin. - (5) If you want to change the dimensions of the major TOUGH2 and ITOUGH2 arrays, edit file <maxsize.inc>. - (6) Edit file <Makefile> to customize the following variables: EOS = ? : Provide number of the EOS module being used. FOR = ? : name of FORtran compiler. COO = ? : Provide COmpiler Options for compilation. LIN = ? : Provide specific LINker options if required. Compiler options are provided for IBM, SUN, DEC ALPHA, and HP workstations. Select the appropriate block by deleting the #-sign in the first column before COM, FOR, COO, (and LIN), and put #-signs elsewhere. (7) If user-specified functions are required, they have to be programmed into the appropriate subroutine in file <it2user.f> (see examples therein and in the ITOUGH2 Command Reference). - (8) Customize ITOUGH2, if needed, in particular: Set default plotting interface, variable IPLOTFMT in BLOCK DATA IT, file <it2main.f> (default: TECPLOT). - (9) Type "make" to run the Makefile. This compiles and links ITOUGH2. The name of the executable is <itough2_IEOS.out>, where IEOS is an integer indicating which EOS module is being used. - (10) On SUN and DEC ALPHA workstations, you may run into a severe linking error due to multiply defined subroutines. However, these compilers nevertheless create a file <itough2_IEOS.out>. This file is not executable. Type "make x" to make it executable. - (11) Add subdirectory ~/bin to the command search path (if not yet defined) Add the following line to your ~/.cshrc file: set path =(\$PATH ~/bin). In your home directory, type: source ~/.cshrc - (13) You may have to customize script files <pri>sta> and <kit>.</pr> See instructions therein. -
(14) Check appropriate installation of script files: Go to directory ~/itough2/samples, and type "prista" or "kit". A message will appear saying that no ITOUGH2 run is in progress. Type "tough2" or "itough2" without any arguments. The command usage should be printed. - (15) The executable <itough2_IEOS.out> can also be used to run TOUGH2, i.e., to solve the forward problem without optimization. Running TOUGH2 as a dummy ITOUGH2 simulation assures that the same version is used to solve both the direct and the inverse problem. Furthermore, disk space can be saved since no separate TOUGH2 executable is needed. A dummy ITOUGH2 input file <invdir> is provided, as well as a UNIX script file <tough2>. Customize script file <tough2>, if needed: script_dir = ? : Provide path to script file <itough2>. Default: ~/bin # RUNNING ITOUGH2 (1) Prepare a TOUGH2 and an ITOUGH2 input deck according to the user's guides. On-line support is provided through command it2help or on the Web at http://www-esd.lbl.gov/ITOUGH2 (click on Command Index). To run ITOUGH2 type: itough2 inv_file dir_file IEOS & #### where: - itough2 is the command name of the script file (or alias) - inv_file is the file name of the ITOUGH2 input file - dir_file is the file name of the TOUGH2 input file - IEOS is the number of the EOS module being used Additional options are available; type "itough2" without any arguments for a list. In order to run the first sample problem, go to subdirectory ~/itough2v3.2/sampleQA and type: itough2 vvRITi vvRIT 3 & It is important to add the "&" at the end of the command line. This sends the execution of the script file to the background, which allows you to use prista and kit. The <itough2> script file generates a temporary directory ~/it2_PID. All files are then copied into this temporary directory. ITOUGH2 is executed, and the result files are copied back to your working directory. This allows one to run multiple inversions at the same time without generating conflicting file names. - (2) During execution, the status of the inverse modeling run can be displayed by running the <pri>sta> script file. Follow the instructions on screen. - (3) If you wish to prematurely terminate an ITOUGH2 simulation or to send a signal which triggers a specific action (e.g. provides printout), use the <kit> script file and follow the instructions on screen. Running TOUGH2 - (1) Prepare a TOUGH2 input deck. - (2) Type "tough2 dir_file IEOS &" for execution, where: - tough2 is the command name of the script file (or alias) - dir_file is the file name of the TOUGH2 input deck - IEOS is the number of the EOS module being used Additional options are available; type "tough2" without any arguments for a list. # Debugging ++++++ Run the sample problems to check the proper installation of the code. If no results are obtained, check: - (1) whether the script file <itough2> is executable and accessible from your working directory; - (2) whether the ITOUGH2 executable <itough2_3.out> exists; - (3) whether the path name to the ITOUGH2 executable is correct (see shell variable prog_dir in script file <itough2>); - (4) error messages in the ITOUGH2 output file; - (5) error messages in the TOUGH2 output file; - (6) for error messages from the shell script (files *.msg); You may also rerun the sample problem using the -no_delete option, and examine all the files in the temporary directory ~/it2_PID. ## SUGGESTIONS The following procedure is suggested: - (1) Use option ">>> stop after INPUT" to check ITOUGH2 input without starting the optimization; check printout of input data; resolve errors and warnings. - (2) Use option ">>> solve FORWARD problem only" to run one forward calculation; check whether the TOUGH2 simulation was terminated normally; draw curves of measured and computed output (see plotfile <*.tec>); check whether the initial guess was reasonable and whether the units and signs of your data were correct; check CPU time needed for one forward calculation. - (3) Perform one iteration (">>> number of ITERATIONS: 1") and check the sensitivity coefficients; if certain parameters are not sensitive or highly correlated with other parameters, try to define new lumped parameters, or exclude the parameter from the optimization. Use option ">>> automatic parameter SELECTION" for a faster and more stable optimization. - (4) Perform optimization; set maximum number of iterations between 5 and 15. - (5) Carefully read warning and error messages in the ITOUGH2 output file. (6) Please report code errors to the code developers. #### TOUGH2 is documented in: - K. Pruess, TOUGH2 A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, Lawrence Berkeley Laboratory Report LBL-29400, May 1991. - K. Pruess, TOUGH User's Guide, Lawrence Berkeley Laboratory Report LBL-20700 June 1987 (also available as Nuclear Regulatory Commission Report NUREG/CR-4645) #### ITOUGH2 is documented in: - S. Finsterle, ITOUGH2 User's Guide, Lawrence Berkeley National Laboratory, Report LBNL-40040, 1998. - S. Finsterle, ITOUGH2 Command Reference, Lawrence Berkeley National Laboratory, Report LBNL-40041, 1997. - S. Finsterle, ITOUGH2 Sample Problems, Lawrence Berkeley National Laboratory, Report LBNL-40042, 1997. #### Mailing address: fax: Stefan Finsterle and Karsten Pruess Lawrence Berkeley National Laboratory Earth Sciences Division, Mail Stop 90-1116 Berkeley, CA 94720 U.S.A. e-mail: SAFinsterle@lbl.gov phone: (510) 486-5205 (510) 486-5686READ.ME......READ.ME......READ.ME......