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Abstract. We present an observational test of the hypothesis that leaking p modes heat the
solar chromosphere. The amplitude of the leaking p modes in magneto-acoustic portals is de-
termined using MOTH and MDI data. We simulate the propagation of these modes into the
chromosphere to determine the height where the wave energy is dissipated by shock waves. A
statistical approach is then used to check if this heating process could account for the observed
variability of the intensity in the Lyman-α emission.
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1. Introduction
In magnetized areas p modes can escape the internal acoustic cavity of the Sun and

propagate upwards into the solar chromosphere (De Pontieu et al. 2003ab, Jefferies et al.
2006, Marsh & Walsh 2006). The underlying mechanism is thought to be wave conversion
from sound waves into predominantely magnetic waves. A comprehensive review of the
involved mechanisms can be found in Campos (1987) or De Pontieu & Erdélyi (2006). As
the pressure and density of the plasma decreases with height the pressure fluctuations of
the wave can no longer be considered infinitesimal and hence the wave crest is significantly
accelerated due to the temperature increase induced by the wave itself. This eventually
leads to the formation of a shock front, i.e. a quasi non-linear increase of pressure and
temperature. The shock front continues to travel upwards while dissipating its energy
and thus heating the plasma. In this paper we simulate this heating process and we can
show that the induced temperature fluctuations in the chromosphere qualitatively agree
with the oscillation pattern of the Lyman-α intensity observed with TRACE.

2. Numerical Simulation of Leaking P Modes
We simulate the propagation of acoustic waves in a modified VAL atmosphere structure

for quiet Sun (Vernazza et al. 1981). The simulation is based on a 1-d code by Kosovichev
& Popov (1981). The wave-induced temperature fluctuations are shown in Figure 1, where
a 2-4 mHz frequency-filtered wave train measured by MDI (Scherrer et al. 1995) in a plage
pixel on January 20, 2003 was used to drive the simulation. The pixel was chosen from an
area where the concurrent observations of the MOTH instrument (Finsterle et al. 2004)
reveal upward traveling waves in the p-mode frequency range (Haberreiter & Finsterle
2007). Figure 1 shows that the temperature in above ∼700 km is strongly affected by the
shock fronts in a typical, quasi-periodic manner. Lyman-α intensity observed by TRACE
(Handy et al. 1999) in plage regions shows a very similar periodicity (see Section 3), hence
suggesting that the leaking p modes modulate the solar Lyman-α emission. On average,
the chromospheric temperature is hotter than if no shocks were present. However, in the
wake of strong shocks occasional cooling down to ∼3500 K also occurs perdominantely
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Figure 1. 1-d numerical simulation of the chromospheric temperature structure in a region
where p modes escape the internal acoustic cavity of the Sun. The simulation is driven by a
piston at the base of the photosphere. The MDI line-of-sight velocity as measured in an area
where the MOTH instrument detects leakage of p modes is used for driving the piston.

Figure 2. The temperature vs. height for the quiet Sun model atmosphere (solid line). The
dashed line shows the temporal average of the temperature when leaking p modes form shocks
in the solar chromosphere. Because p-mode leakage is closely related to magnetic fields this
mechanism could explain why the chromosphere appears hotter in plage than in quiet Sun
areas.
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Figure 3. The observed variability of Lyman-α intensity (TRACE, solid line) and the simulated
variability of the temperature in the line-forming layer (1.5 2 Mm, dotted line). The temperature
in the line-forming layer is directly affecting the intensity of the emission line. The increased
power around 3-4 mHz is due to leaking p modes.

around 1 Mm (black and dark blue areas in Figure 1). These could be the regions where
solar molecular lines are observed (e.g. Ayres et al. 1986). The temporal average of the
shock-induced heating results in a chromospheric temperature structure which resembles
the “true” temperature stratification in a magnetized (plage) model atmosphere (Figure
2).

3. Comparison with Observed Lyman-α Variability
The oscillatory spectrum of Lyman-α observations in a plage region by TRACE is

shown in Figure 3 (solid line). The TRACE spectrum was derived from a 71-minute
run with one minute sampling interval. The dotted line is the oscillatory spectrum of the
simulated temperature between 1.5 and 2.0 Mm above the photosphere. Both curves show
a prominent peak in the 3-4 mHz area, indicating that the shock-induced temperature
fluctuations could indeed be responsible for the observed Lyman-α variability. On larger
time scales, the same mechanims could even cause the solar cycle related intensity changes
in Lyman-α emission due to the changing surface fraction of magnetized areas on the
solar disk.

4. Results and Discussion
P-mode induced shocks modify the temperature stratification of a standard quiet Sun

atmosphere to closely resemble that for a plage atmosphere (Figure 2). Since p modes
leakage predominantely occurs in magnetic areas the described mechanism could explain
why the chromosphere in plage appears hotter than in quiet Sun. We found that Lyman-
α intensity oscillations in the p-mode frequency range are comparable to the simulated
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temperature oscillations of the chromosphere when realistic assumptions for the driving
piston are extracted from observations (Figure 3).
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