8,259 research outputs found

    Spectral Analyses of the Nearest Persistent Ultraluminous X-Ray Source M33 X-8

    Full text link
    We provide a detailed analysis of 12 XMM observations of the nearest persistent extragalactic ultraluminous X-ray source (ULX), M33 X-8. No significant spectral evolution is detected between the observations, therefore we combine the individual observations to increase the signal-to-noise ratio for spectral fitting. The combined spectra are best fitted by the self-consistent p-free disk plus power-law component model with p = 0.571_{-0.030}^{+0.032}, kT_{in} = 1.38_{-0.08}^{+0.09} keV, and the flux ratio of the p-free disk component to the power-law component being 0.63:0.37 in the 0.3 -- 10 keV band. The fitting indicates that the black hole in M33 X-8 is of \sim 10 M_{\odot} and accretes at a super-Eddington rate (\sim 1.5 L_{Edd}), and the phase of the accretion disk is close to a slim disk (p = 0.5). We report, for the first time, that an extra power-law component is required in addition to the p-free disk model for ULXs. In super-Eddington cases, the power-law component may possibly result from the optically thin inner region f the disk or a comptonized corona similar to that of a standard thin disk.Comment: 11 pages, 1 table, 2 figures, accepted by PAS

    Multi-wavelength variability properties of Fermi blazar S5 0716+714

    Full text link
    S5 0716+714 is a typical BL Lacertae object. In this paper we present the analysis and results of long term simultaneous observations in the radio, near-infrared, optical, X-ray and γ\gamma-ray bands, together with our own photometric observations for this source. The light curves show that the variability amplitudes in γ\gamma-ray and optical bands are larger than those in the hard X-ray and radio bands and that the spectral energy distribution (SED) peaks move to shorter wavelengths when the source becomes brighter, which are similar to other blazars, i.e., more variable at wavelengths shorter than the SED peak frequencies. Analysis shows that the characteristic variability timescales in the 14.5 GHz, the optical, the X-ray, and the γ\gamma-ray bands are comparable to each other. The variations of the hard X-ray and 14.5 GHz emissions are correlated with zero-lag, so are the V band and γ\gamma-ray variations, which are consistent with the leptonic models. Coincidences of γ\gamma-ray and optical flares with a dramatic change of the optical polarization are detected. Hadronic models do not have the same nature explanation for these observations as the leptonic models. A strong optical flare correlating a γ\gamma-ray flare whose peak flux is lower than the average flux is detected. Leptonic model can explain this variability phenomenon through simultaneous SED modeling. Different leptonic models are distinguished by average SED modeling. The synchrotron plus synchrotron self-Compton (SSC) model is ruled out due to the extreme input parameters. Scattering of external seed photons, such as the hot dust or broad line region emission, and the SSC process are probably both needed to explain the γ\gamma-ray emission of S5 0716+714.Comment: 43 pages, 13 figures, 3 tables, to be appeared in Ap

    Spin-charge separation in the single hole doped Mott antiferromagnet

    Full text link
    The motion of a single hole in a Mott antiferromagnet is investigated based on the t-J model. An exact expression of the energy spectrum is obtained, in which the irreparable phase string effect [Phys. Rev. Lett. 77, 5102 (1996)] is explicitly present. By identifying the phase string effect with spin backflow, we point out that spin-charge separation must exist in such a system: the doped hole has to decay into a neutral spinon and a spinless holon, together with the phase string. We show that while the spinon remains coherent, the holon motion is deterred by the phase string, resulting in its localization in space. We calculate the electron spectral function which explains the line shape of the spectral function as well as the ``quasiparticle'' spectrum observed in angle-resolved photoemission experiments. Other analytic and numerical approaches are discussed based on the present framework.Comment: 16 pages, 9 figures; references updated; to appear in Phys. Rev.

    Magnetic Incommensurability in Doped Mott Insulator

    Full text link
    In this paper we explore the incommensurate spatial modulation of spin-spin correlations as the intrinsic property of the doped Mott insulator, described by the t−Jt-J model. We show that such an incommensurability is a direct manifestation of the phase string effect introduced by doped holes in both one- and two-dimensional cases. The magnetic incommensurate peaks of dynamic spin susceptibility in momentum space are in agreement with the neutron-scattering measurement of cuprate superconductors in both position and doping dependence. In particular, this incommensurate structure can naturally reconcile the neutron-scattering and NMR experiments of cuprates.Comment: 12 pages (RevTex), five postscript figure

    XAS study of the local environment of impurities in doped TiO2 thin films

    Full text link
    In this work we present an X-ray Absorption Spectroscopy characterization of the local environment of the impurity in room temperature ferromagnetic anatase TiO2 thin films doped with Co, Ni, Cu, or Zn, deposited on LaAlO3 substrate by Pulsed Laser Deposition. It was found that there is a considerable amount of impurity atoms substituting Ti in TiO2 anatase, although the presence of metal transition monoxide clusters can not be discarded. From our results we infer that the observed room temperature ferromagnetism of the samples could be assigned to the metal transition atoms replacing Ti in TiO2 anatase.Comment: 4 pages, 3 figures, 1 table, Physica B (in press

    Coexistence of Itinerant Electrons and Local Moments in Iron-Based Superconductors

    Full text link
    In view of the recent experimental facts in the iron-pnictides, we make a proposal that the itinerant electrons and local moments are simultaneously present in such multiband materials. We study a minimal model composed of coupled itinerant electrons and local moments to illustrate how a consistent explanation of the experimental measurements can be obtained in the leading order approximation. In this mean-field approach, the spin-density-wave (SDW) order and superconducting pairing of the itinerant electrons are not directly driven by the Fermi surface nesting, but are mainly induced by their coupling to the local moments. The presence of the local moments as independent degrees of freedom naturally provides strong pairing strength for superconductivity and also explains the normal-state linear-temperature magnetic susceptibility above the SDW transition temperature. We show that this simple model is supported by various anomalous magnetic properties and isotope effect which are in quantitative agreement with experiments.Comment: 7 pages, 4 figures; an expanded versio

    Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements

    Get PDF
    This study highlights the role of interactions between surface and sub-surface water of the riparian zone of a large river (the Garonne, SW France). Information is given about the role of surface water in supplying Dissolved Organic Carbon (DOC ) to the riparian zone for nitrate removal processes. The densities of bacteria (up to 3.3106 cell m L-1) in groundwater are strongly conditioned by the water moving during flood events. Total bacterial densities in groundwater were related to surface water bacterial densities. In sediment, total bacteria are attached mainly to fine particles (90 % in the fraction < 1 mm). Spatial variations in organic carbon and nitrate content in groundwater at the site studied are correlated with exchanges between the groundwater and the river, from the upstream to the downstream part of the meander. Total bacterial densities, nitrate and decressing organic carbon concentrations follow the same pattern. These results suggest that, in this kind of riparian wetland, nitrate from alluvial groundwater influenced by agricultural practices may be denitrified by bacteria in the presence of organic carbon from river surface water

    Urban energy exchanges monitoring from space

    Get PDF
    One important challenge facing the urbanization and global environmental change community is to understand the relation between urban form, energy use and carbon emissions. Missing from the current literature are scientific assessments that evaluate the impacts of different urban spatial units on energy fluxes; yet, this type of analysis is needed by urban planners, who recognize that local scale zoning affects energy consumption and local climate. However, satellite-based estimation of urban energy fluxes at neighbourhood scale is still a challenge. Here we show the potential of the current satellite missions to retrieve urban energy budget, supported by meteorological observations and evaluated by direct flux measurements. We found an agreement within 5% between satellite and in-situ derived net all-wave radiation; and identified that wall facet fraction and urban materials type are the most important parameters for estimating heat storage of the urban canopy. The satellite approaches were found to underestimate measured turbulent heat fluxes, with sensible heat flux being most sensitive to surface temperature variation (-64.1, +69.3 W m-2 for ±2 K perturbation); and also underestimate anthropogenic heat flux. However, reasonable spatial patterns are obtained for the latter allowing hot-spots to be identified, therefore supporting both urban planning and urban climate modelling

    Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity

    Full text link
    In this article I give a pedagogical illustration of why the essential problem of high-Tc superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by doping. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang-Doucot-Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon doping, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite doping, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature "strange metal phase" of the doped Mott insulator.Comment: 12 pages, 12 figure
    • …
    corecore