248 research outputs found

    Competition and coexistence of bond and charge orders in (TMTTF)2AsF6

    Full text link
    (TMTTF)2AsF6 undergoes two phase transitions upon cooling from 300 K. At Tco=103 K a charge-ordering (CO) occurs, and at Tsp(B=9 T)=11 K the material undergoes a spin-Peierls (SP) transition. Within the intermediate, CO phase, the charge disproportionation ratio is found to be at least 3:1 from carbon-13 NMR 1/T1 measurements on spin-labeled samples. Above Tsp, up to about 3Tsp, 1/T1 is independent of temperature, indicative of low-dimensional magnetic correlations. With the application of about 0.15 GPa pressure, Tsp increases substantially, while Tco is rapidly suppressed, demonstrating that the two orders are competing. The experiments are compared to results obtained from calculations on the 1D extended Peierls-Hubbard model.Comment: 4 pages, 5 figure

    String breaking by dynamical fermions in three-dimensional lattice QCD

    Full text link
    The first observation is made of hadronic string breaking due to dynamical fermions in zero temperature lattice QCD. The simulations are done for SU(2) color in three dimensions, with two flavors of staggered fermions. The results have clear implications for the large scale simulations that are being done to search (so far, without success) for string breaking in four-dimensional QCD. In particular, string breaking is readily observed using only Wilson loops to excite a static quark-antiquark pair. Improved actions on coarse lattices are used, providing an extremely efficient means to access the quark separations and propagation times at which string breaking occurs.Comment: Revised version to appear in Physical Review D, has additional discussion of the results, additional references, modified title, larger figure

    Vanishing Hall Constant in the Stripe Phase of Cuprates

    Full text link
    The Hall constant R_H is considered for the stripe structures. In order to explain the vanishing of R_H in LNSCO at x = 1/8, we use the relation of R_H to the Drude weight D as well as direct numerical calculation, to obtain results within the t-J model, where the stripes are imposed via a charge potential and a staggered magnetic field. The origin of R_H ~ 0 is related to a maximum in D and the minimal kinetic energy in stripes with a hole filling ~ 1/2. The same argument indicates on a possibility of R_H ~ 0 in the whole range of static stripes for x < 1/8.Comment: RevTeX, 4 pages, 5 figure

    Reactive Hall constant of Strongly Correlated Electrons

    Full text link
    The zero-temperature Hall response within tight-binding models of correlated electrons is studied. Using the linear response theory and a linearization in the magnetic field B, a general relation for the reactive (zero frequency) Hall constant in the fast (transport) limit is derived, involving only matrix elements between the lowest excited states at B=0; for noninteracting fermions, the Boltzmann expression is reproduced. For a Fermi liquid with a well defined Fermi surface and linear gapless excitations an analogous expression is found more generally. In the specific case of quasi-one-dimensional correlated systems a relation of RH0R^0_H to the charge stiffness D is recovered. Similar analysis is performed and discussed for D and the compressibility.Comment: 8 pages, submitted to Phys.Rev.

    In-Situ Infrared Transmission Study of Rb- and K-Doped Fullerenes

    Full text link
    We have measured the four IR active C60C_{60} molecular vibrations in MxC60M_{x}C_{60} (M=K,Rb)(M = K, Rb) as a function of doping xx. We observe discontinuous changes in the vibrational spectra showing four distinct phases (presumably x=0,3,4x = 0, 3, 4, and 6). The 1427cm11427cm^{-1} and 576cm1576cm^{-1} modes show the largest changes shifting downward in frequency in four steps as the doping increases. Several new very weak modes are visible in the x=6x=6 phase and are possibly Raman modes becoming weakly optically active. We present quantitative fits of the data and calculate the electron-phonon coupling of the 1427cm11427cm^{-1} IR mode.Comment: 3 pages, Figure 1 included, 3 more figures available by request. REVTEX v3.0 IRC60DO

    Plasmon excitations and 1D - 2D dimensional crossover in quantum crossbars

    Full text link
    Spectrum of boson fields and two-point correlators are analyzed in quantum crossbars (QCBs, a superlattice formed by m crossed interacting arrays of quantum wires), with short range inter-wire capacitive interaction. Spectral and correlation properties of double (m=2) and triple (m-3) QCBs are studied. It is shown that the standard bosonization procedure is valid, and the system behaves as a sliding Luttinger liquid in the infrared limit, but the high frequency spectral and correlation characteristics have either 1D or 2D nature depending on the direction of the wave vector in the 2D elementary cell of reciprocal lattice. As a result, the crossover from 1D to 2D regime may be experimentally observed. It manifests itself as appearance of additional peaks of optical absorption, non-zero transverse space correlators and periodic energy transfer between arrays ("Rabi oscillations")

    dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element

    Get PDF
    It was described earlier that the Drosophila GAGA factor [Trithorax-like (Trl)] interacts with dSAP18, which, in mammals, was reported to be a component of the Sin3–HDAC co-repressor complex. GAGA–dSAP18 interaction was proposed to contribute to the functional regulation of the bithorax complex (BX-C). Here, we show that mutant alleles of Trl, dsap18 and drpd3/hdac1 enhance A6-to-A5 transformation indicating a contribution to the regulation of Abd-B expression at A6. In A6, expression of Abd-B is driven by the iab-6 enhancer, which is insulated from iab-7 by the Fab-7 element. Here, we report that GAGA, dSAP18 and dRPD3/HDAC1 co-localize to ectopic Fab-7 sites in polytene chromosomes and that mutant Trl, dsap18 and drpd3/hdac1 alleles affect Fab-7-dependent silencing. Consistent with these findings, chromatin immunoprecipitation analysis shows that, in Drosophila embryos, the endogenous Fab-7 element is hypoacetylated at histones H3 and H4. These results indicate a contribution of GAGA, dSAP18 and dRPD3/HDAC1 to the regulation of Fab-7 function

    From Luttinger to Fermi liquids in organic conductors

    Full text link
    This chapter reviews the effects of interactions in quasi-one dimensional systems, such as the Bechgaard and Fabre salts, and in particular the Luttinger liquid physics. It discusses in details how transport measurements both d.c. and a.c. allow to probe such a physics. It also examine the dimensional crossover and deconfinement transition occurring between the one dimensional case and the higher dimensional one resulting from the hopping of electrons between chains in the quasi-one dimensional structure.Comment: To be published In the book "The Physics of Organic Conductors and Superconductors", Springer, 2007, ed. A. Lebe

    Observation and Assignment of Silent and Higher Order Vibrations in the Infrared Transmission of C60 Crystals

    Full text link
    We report the measurement of infrared transmission of large C60 single crystals. The spectra exhibit a very rich structure with over 180 vibrational absorptions visible in the 100 - 4000 cm-1 range. Many silent modes are observed to have become weakly IR-active. We also observe a large number of higher order combination modes. The temperature (77K - 300K) and pressure (0 - 25KBar) dependencies of these modes were measured and are presented. Careful analysis of the IR spectra in conjunction with Raman scattering data showing second order modes and neutron scattering data, allow the selection of the 46 vibrational modes C60. We are able to fit *all* of the first and second order data seen in the present IR spectra and the previously published Raman data (~300 lines total), using these 46 modes and their group theory allowed second order combinations.Comment: REVTEX v3.0 in LaTeX. 12 pages. 8 Figures by request. c60lon
    corecore