909 research outputs found

    Development of Bursaphelenchus xylophilus-specific microsatellite markers to assess the genetic diversity of populations from European forests.

    Get PDF
    The pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner & Buhrer, 1934), Nickle (Nematoda: Aphelenchoididae) is the causal agent of the pine wilt disease and is currently considered as one of the most important pests and pathogens in the world. Its introduction and spread in new forest ecosystems have considerable consequences both economically and environmentally. Therefore, it is of crucial importance to identify its invasion routes, to determine the origin of new outbreaks and to understand the invasion process of this species to prevent further dissemination of the disease in Europe. In order to address these questions using population genetic approaches, we have been developing a set of PWN-specific microsatellite markers, usable in routine conditions at the individual level, thanks to multiplex PCR coupled with a fast DNA extraction method. Microsatellites were isolated from a genomic library using a procedure combining DNA enrichment and high throughput pyrosequencing as recently described by Malausa et al. (2011). Primers were designed for 71 and 23 perfect and compound microsatellites, respectively, 26 of which were experimentally validated so far. Among them, 18 markers exhibited polymorphism after several rounds of amplification tests. Preliminary results on a set of 190 nematodes from 13 populations indicate a very low level of polymorphism in PWN populations from Portugal and Madeira Island, compared to populations from the native area in North America. The genotyping of a wide collection of samples from Europe, Asia and North America is currently underway in the laboratory. Assessing the genetic diversity of populations indeed constitutes the cornerstone to determine whether the European invasive PWN populations are the result of a single or several independent events of introduction

    HI asymmetry in the isolated galaxy CIG 85 (UGC 1547)

    Full text link
    We present the results from the Giant Metrewave Radio Telescope (GMRT) interferometric HI and 20 cm radio continuum observations of CIG 85, an isolated asymmetric galaxy from the AMIGA (Analysis of the Interstellar Medium of Isolated GAlaxies) sample. Despite being an isolated galaxy, CIG 85 showed an appreciable optical and HI spectral asymmetry and therefore was an excellent candidate for resolved HI studies to understand the reasons giving rise to asymmetries in isolated galaxies. The galaxy was imaged in HI and 20 cm radio continuum using the GMRT. For a detailed discussion of the results we also made use of multi-wavelength data from archival SDSS, GALEX and Halpha imaging. We find the HI in CIG 85 to have a clumpy, asymmetric distribution which in the NW part is correlated with optical tail like features, but the HI velocity field displays a relatively regular rotation pattern. Evaluating all the observational evidence, we come to a conclusion that CIG 85 is most likely a case of a disturbed spiral galaxy which now appears to have the morphology of an irregular galaxy. Although it is currently isolated from major companions, the observational evidence is consistent with HI asymmetries, a highly disturbed optical disk and recent increase in star formation having been caused by a minor merger, remnants of which are now projected in front of the optical disk. If this is correct, the companion will be fully accreted by CIG 85 in the near future.Comment: 10 pages, 9 figures, accepted in A&

    Chemistry in isolation: High CCH/HCO+ line ratio in the AMIGA galaxy CIG 638

    Full text link
    Multi-molecule observations towards an increasing variety of galaxies have been showing that the relative molecular abundances are affected by the type of activity. However, these studies are biased towards bright active galaxies, which are typically in interaction. We study the molecular composition of one of the most isolated galaxies in the local Universe where the physical and chemical properties of their molecular clouds have been determined by intrinsic mechanisms. We present 3 mm broad band observations of the galaxy CIG 638, extracted from the AMIGA sample of isolated galaxies. The emission of the J=1-0 transitions of CCH, HCN, HCO+, and HNC are detected. Integrated intensity ratios between these line are compared with similar observations from the literature towards active galaxies including starburst galaxies (SB), active galactic nuclei (AGN), luminous infrared galaxies (LIRG), and GMCs in M33. A significantly high ratio of CCH with respect to HCN, HCO+, and HNC is found towards CIG 638 when compared with all other galaxies where these species have been detected. This points to either an overabundance of CCH or to a relative lack of dense molecular gas as supported by the low HCN/CO ratio, or both. The data suggest that the CIG 638 is naturally a less perturbed galaxy where a lower fraction of dense molecular gas, as well as a more even distribution could explain the measured ratios. In this scenario the dense gas tracers would be naturally dimmer, while the UV enhanced CCH, would be overproduced in a less shielded medium.Comment: Letter accepted for publication in A&

    The AMIGA sample of isolated galaxies: VIII. The rate of asymmetric HI profiles in spiral galaxies

    Full text link
    (abridged) Measures of the HI properties of a galaxy are among the most sensitive interaction diagnostic at our disposal. We report here on a study of HI profile asymmetries (e.g., lopsidedness) in a sample of some of the most isolated galaxies in the local Universe. This presents us with an excellent opportunity to quantify the range of intrinsic HI asymmetries and provides us with a zero-point calibration for evaluating these measurements in less isolated samples. We characterize the HI profile asymmetries and search for correlations between HI asymmetry and their environments, as well as their optical and far infrared (FIR) properties. We use high signal-to-noise global HI profiles for galaxies in the AMIGA project (http://amiga.iaa.csic.es). We restrict our study to N=166 galaxies with accurate measures of the HI shape properties. We quantify asymmetries using a flux ratio parameter. The asymmetry parameter distribution of our isolated sample is well described by a Gaussian model. The width of the distribution is sigma=0.13, and could be even smaller (sigma=0.11) if instrumental errors are reduced. Only 2% of our carefully vetted isolated galaxies sample show an asymmetry in excess of 3sigma. By using this sample we minimize environmental effects as confirmed by the lack of correlation between HI asymmetry and tidal force (one-on-one interactions) and neighbor galaxy number density. On the other hand, field galaxy samples show wider distributions and deviate from a Gaussian curve. As a result we find higher asymmetry rates (~10-20%) in such samples. We find evidence that the spiral arm strength is inversely correlated with the HI asymmetry. We also find an excess of FIR luminous galaxies with larger HI asymmetries that may be spirals associated with hidden accretion events. Our sample presents the smallest fraction of asymmetric HI profiles compared with any other yet studied.Comment: 18 pages, 17 figures, accepted for publication in A&

    Setting the normalcy level of HI properties in isolated galaxies

    Get PDF
    Studying the atomic gas (HI) properties of the most isolated galaxies is essential to quantify the effect that the environment exerts on this sensitive component of the interstellar medium. We observed and compiled HI data for a well defined sample of ~ 800 galaxies in the Catalog of Isolated Galaxies, as part of the AMIGA project (Analysis of the ISM in Isolated GAlaxies, http://amiga.iaa.es), which enlarges considerably previous samples used to quantify the HI deficiency in galaxies located in denser environments. By studying the shape of 182 HI profiles, we revisited the usually accepted result that, independently of the environment, more than half of the galaxies present a perturbed HI disk. In isolated galaxies this would certainly be a striking result if these are supposed to be the most relaxed systems, and has implications in the relaxation time scales of HI disks and the nature of the most frequent perturbing mechanisms in galaxies. Our sample likely exhibits the lowest HI asymmetry level in the local Universe. We found that other field samples present an excess of ~ 20% more asymmetric HI profiles than that in CIG. Still a small percentage of galaxies in our sample present large asymmetries. Follow-up high resolution VLA maps give insight into the origin of such asymmetries.Comment: 4 pages, 2 figures, Conference 'Galaxies in Isolation: Exploring Nature vs. Nurture', Granada, 12-15 May 2009. To be published in the ASP Conference Serie

    A ~ 12 kpc HI extension and other HI asymmetries in the isolated galaxy CIG 340 (IC 2487)

    Full text link
    HI kinematic asymmetries are common in late-type galaxies irrespective of environment, although the amplitudes are strikingly low in isolated galaxies. As part of our studies of the HI morphology and kinematics in isolated late-type galaxies we have chosen several very isolated galaxies from the AMIGA sample for HI mapping. Here we present GMRT 21-cm HI line mapping of CIG 340 which was selected because its integrated HI spectrum has a very symmetric profile, Aflux = 1.03. Optical images of the galaxy hinted at a warped disk in contrast to the symmetric integrated HI spectrum profile. Our aim is to determine the extent to which the optical asymmetry is reflected in the resolved HI morphology and kinematics. GMRT observations reveal significant HI morphological asymmetries in CIG 340 despite it's overall symmetric optical form and highly symmetric HI spectrum. The most notable HI features are: 1) a warp in the HI disk (with an optical counterpart), 2) the HI north/south flux ratio = 1.32 is much larger than expected from the integrated HI spectrum profile and 3) a ~ 45" (12 kpc) HI extension, containing ~ 6% of the detected HI mass on the northern side of the disk. We conclude that in isolated galaxies a highly symmetric HI spectrum can mask significant HI morphological asymmetries. The northern HI extension appears to be the result of a recent perturbation (10^8 yr), possibly by a satellite which is now disrupted or projected within the disk. This study provides an important step in our ongoing program to determine the predominant source of HI asymmetries in isolated galaxies. For CIG 340 the isolation from major companions, symmetric HI spectrum, optical morphology and interaction timescales have allowed us to narrow the possible causes the HI asymmetries and identify tests to further constrain the source of the asymmetries.Comment: 10 page

    The AMIGA sample of isolated galaxies. V. Quantification of the isolation

    Get PDF
    The AMIGA project aims to build a well defined and statistically significant reference sample of isolated galaxies in order to estimate the environmental effects on the formation and evolution of galaxies. The goal of this paper is to provide a measure of the environment of the isolated galaxies in the AMIGA sample, quantifying the influence of the candidate neighbours identified in our previous work and their potential effects on the evolution of the primary galaxies. Here we provide a quantification of the isolation degree of the galaxies in this sample. Our starting sample is the Catalogue of Isolated Galaxies (CIG). We used two parameters to estimate the influence exerted by the neighbour galaxies on the CIG galaxy: the local number density of neighbour galaxies and the tidal strength affecting the CIG galaxy. We show that both parameters together provide a comprehensive picture of the environment. For comparison, those parameters have also been derived for galaxies in denser environments such as triplets, groups and clusters. The CIG galaxies show a continuous spectrum of isolation, as quantified by the two parameters, from very isolated to interacting. The fraction of CIG galaxies whose properties are expected to be influenced by the environment is however low (159 out of 950 galaxies). The isolated parameters derived for the comparsion samples gave higher values than for the CIG and we found clear differences for the average values of the 4 samples considered, proving the sensitivity of these parameters. The environment of the galaxies in the CIG has been characterised, using two complementary parameters quantifying the isolation degree, the local number density of the neighbour galaxies and the tidal forces affecting the isolated galaxies. (Abridged)Comment: 10 pages, 12 figures, proposed for acceptance A&

    The central parsecs of M87: jet emission and an elusive accretion disc

    Full text link
    We present the first simultaneous spectral energy distribution (SED) of M87 core at a scale of 0.4 arcsec (32pc\sim 32\, \rm{pc}) across the electromagnetic spectrum. Two separate, quiescent, and active states are sampled that are characterized by a similar featureless SED of power-law form, and that are thus remarkably different from that of a canonical active galactic nuclei (AGN) or a radiatively inefficient accretion source. We show that the emission from a jet gives an excellent representation of the core of M87 core covering ten orders of magnitude in frequency for both the active and the quiescent phases. The inferred total jet power is, however, one to two orders of magnitude lower than the jet mechanical power reported in the literature. The maximum luminosity of a thin accretion disc allowed by the data yields an accretion rate of <6×105Myr1< 6 \times 10^{-5}\, \rm{M_\odot \, yr^{-1}}, assuming 10% efficiency. This power suffices to explain M87 radiative luminosity at the jet-frame, it is however two to three order of magnitude below that required to account for the jet's kinetic power. The simplest explanation is variability, which requires the core power of M87 to have been two to three orders of magnitude higher in the last 200 yr. Alternatively, an extra source of power may derive from black hole spin. Based on the strict upper limit on the accretion rate, such spin power extraction requires an efficiency an order of magnitude higher than predicted from magnetohydrodynamic simulations, currently in the few hundred per cent range.Comment: 18 pages, 6 figures. Accepted for publication in MNRA
    corecore